PENGARUH PENAMBAHAN PECAHAN CANGKANG SIPUT SEBGAI PENGGANTI AGREGAT TERHADAP KUAT TEKAN PAVING BLOCK

TUGAS AKHIR

Disusun Oleh:

<u>FITRA ARY WINANDA</u>

13.811.0042

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS MEDAN AREA MEDAN 2018

PENGARUH PENAMBAHAN PECAHAN CANGKANG SIPUT SEBGAI PENGGANTI AGREGAT TERHADAP KUAT TEKAN PAVING BLOCK

TUGAS AKHIR

Diajukan Untuk Memenuhi syarat memperoleh gelar sarjana teknik

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS MEDAN AREA MEDAN 2018

PENGARUH PENAMBAHAN PECAHAN CANGKANG SIPUT SEBAGAI BAHAN PENGGANTI AGREGAT KASAR TERHADAP KUAT TEKAN PAVING BLOCK

SKRIPSI

Oleh:

FITRA ARY WINANDA NPM: 13 811 0042

Disetujui

Pembimbing I

(Ir. Nurmaidah, MT)

Dekan

pembimbing II

(Ir. Subur Panjaitan ,MT)

Mengetahui

Ka. Program Studi

SURAT PERNYATAAN

Dengan ini saya menyatakan bahwa skripsi ini adalah hasil karya saya sendiri yang di ajukan untuk memperoleh gelar kesarjanaan.dengan beberapa kutipan refrensi yang di terbitkan oleh orang lain yang secara resmi tertulis dan di sebutkan dalam daftar pustaka. Apabila kelak kemudian hari ternyata bahwa pernyataan saya ini tidak benar, Maka saya bersedia mendapatkan sanksi secara akademik untuk dicabut gelar kesarjanaan saya.

Medan, 10 Oktober 2018

Fitra Ary Winanda

NPM: 138110042

ABSTRAK

Penelitian yang dilakukan ini untuk mengetahui pengaruh pecahan cangkang siput dengan ukuran tertentu sebagai pengganti batu split terhadap kuat tekan paving block, dengan bahan penyusun semen, agregat halus, agregat kasar,air serta pecahan cangkang siput sebagai bahan pengganti patu split atau batu pecah yang lolos saringan no 4 atau tertahan di saringan no 8, sebagai bahan subtitusi sebanyak 20 %, dan 50% dari berat batu split yang di gunakan pada penggunaan normal.Benda Uji sebanyak 60 buah, dengan 20 benda uji setiap variasinya sesuai dengan peraturan SNI, dengan mig design mendapatkan mutu k-200 dan dilakukan pengujian pada umur 28 hari,yang nantinya pengujian benda uji normal hasilnya akan di bandingkan dengan benda uji dengan subtitusi pecahan cangkang siput 20% dan 50 %. Hasil yang di dapat pada umur 28 hari yang dilakukan pengujian kuat tekan di dapatdengan variasi 0% di peroleh kuat tekan rata rata 20,67 Mpa dengan dengan densitas 1,8% dan penyerapan air 3,24%, sedangkan hasil yang di dapat dari 20 % penambahan cangkang siput kuat tekan rata -rata 17,05 Mpa,dan penyerapan air rata - rata 3,39 % dan densitas rata-rata 1,79 %. Hasil yang didapat dari subtitusi 50 % cangkang siput kuat tekan 11,81 Mpa dengan penyerapan air 4,01 % dan densitas sebesar 1,77 %. Dari pengujian, hasil yang maksimal di dapat dari subtitusi cangkang siput 20% yang tetap mengunakan cangkang siput namun tetap mendapati kuat tekan yang tinggi.

Kata kunci : cangkang siput,pengujian kubus,paving block,kuat tekan,batu split,K-200

ABSTRACT

This research was conducted to find out the effect of shell fragment with certain size as a substitute for split stone against the compressive strength of paving block, with cement making materials, fine aggregate, coarse aggregate, water and shell snail shells as replacement material of split or crushed stone passes No. 4 or stuck in sieve No. 8, as a substitution material of 20%, and 50% of the weight of split stone is used in normal use. 60 units of test pieces, with 20 specimens of each variation in accordance with SNI regulations, with mig design obtained k-200 and tested at age 28 days, which will test the normal test object will be compared with test specimens with shell substitution shell 20% and 50%. Results can be at age 28 days by testing the compressive strength in the variation 0% can be obtained with a compression strength average 20,67 Mpa with 2,21% density and water absorption 3,24%, while the results can be from 20% additions 17,05 Mpa average compression slug shells, and average water absorption 3.39% and average density 2,14%. Results obtained from substitution 50% strong shell snail shells 11,81 MPa with water absorption 4.01% and density of 2,13%. From the test, the maximum result can be from the substitution of 20% snail shells that still use the snail's shell but still find a high compressive strength.

Keywords: snailshell,cub,testing,paving block,compressive strength,split stone,

KATA PENGANTAR

Puji dan syukur kita ucapkan kehadirat Tuhan Yang Maha Esa, yang telah memberikan rahmat dan karunia nya serta membawa kita dari alam kebodohan menuju alam pengetahuan, dan penulis dapat menyelesaikan penulisan Tugas Akhir ini. Tugas Akhir ini merupakan syarat yang wajib di penuhi oleh setiap mahasiswa yang akan menyelesaikan studinya di program Studi Teknik Sipil Fakultas Teknik Universitas Medan Area.

Dalam pengerjaan tugas akhir ini penulis banyak mendapatkan bantuan baik secara materil maupun secara akademik dari para ahli di bidangnya , dengan ini saya ucapan syukur dan terimaksih saya dengan terselesaikannya tugas akhir ini.

- 1. Bapak Prof. Dr.Dadan Ramdan M.Eng, M.Sc Selaku rektor Universitas medan area
- Bapak Prof. Dr.Ir, Armansyah Ginting M, Eng, selaku dekan Fakultas Teknik Universitas medan Area
- Bapak Ir. Kamaluddin Lubis , MT selaku kepala program studi Teknik Sipil Universitas Medan Area.
- 4. Ibu Ir. Nurmaidah, MT Selaku dosen pembimbing pertama yang telah memberikan banyak sekali masukan serta nasehat dalam pengerjaan tugas akhir ini hingga dapat terselesaikan
- 5. Bapak Ir. Subur panjaitan, MT selaku Dosen Pembimbing kedua yang selalu

memberikan masukan serta pengarahan .hingga pengerjaan tugas akhir ini

dapat terselesaikan

6. Bapak Rudi Kusnadi yang telah Memberikan izin pengambilan Riset di dinas

bina Marga dan bina Kostruksi

7. Ibu Ir Nuril Mahda Rangkuti MT sebagai dosen pembimbing akademik

8 Kepada orang tua penulis mengucapka banyak terima kasih sedalam

dalamnya atas dorongan semangat, maupun materil dan tanpa mereka penulis

tidak akan pernah berhasil menyelesaikan Tugas Akhir ini.

9. Semuat teman -teman yang melakukan riset di LAB yang sama (Darwin,

Yobel, Frengki, Rabbi) terimakasih atas kerja sama dan dukunganya dalam

menyelesaikan riset ini.

10. seluruh teman – teman teknik sipil angkatan 2013 malam satu angkatan dan

satu perjuangan yang tidak dapat di sebutkan satu persatu.

Terimakasih atas Bantuan, serta Dukungan dan doa yang di berikan Semoga Allah

SWT membalas segala kebaikan semua pihak orang yang terlibat yang telah

membantumenyelesaikan tugas akhir ini.

Medan, 10 OKTOBER 2018

Penulis

FITRA ARY WINANDA

13.811.0042

iν

ABSTRAK	j
ABSTRACT	ii
KATA PENGANTAR	iii
DAFTAR ISI	V
DAFTAR TABEL	vii
DAFTAR GAMBAR	viii
BAB I PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Maksud dan Tujuan	3
1.3 Rumusan Masalah	3
1.4 Batasan Masalah	4
1.5 Manfaat	4
1.6 sistemmatika Penulisan	4
BAB II TINJAUAN PUSTAKA	6
2.1 Pengertian Paving Block	6
2.2 Jenis paving Block	9
2.3 syarat Mutu Paving block	11
2.4 Mix design paving block	14
2.5 Penelitian Yangn Telah dilakukan	25
2.6 Pencetakan Benda Uji	29
2.7 Pengujian Benda Uji	32
BAB III METODOLOGI PENELITIAN	33
3.1 Lokasi Penelitian	34
3.2 Bahan Dan Peralatan	36
3.3 Diagram Alir Pembuatan Benda Uji	37
3.4 Tahap Pengujian Bahan	38

DAFTAR ISI

Hal

3.5 Tahap penyiapan benda Uji	39
3.6 Perencanaan Mix design beton K-200	39
BAB IV PERHITUNGAN DAN PEMBAHASAN	49
4.1 Hasil Penelitian Benda Uji	49
4.1.1 Perhitungan Berat benda Uji	49
4.1.2 Pemeriksaan Penyerapan Air	51
4.1.3 Pengukuran Densitas	55
4.1.4 Pengujian Kuat Tekan	58
4.2 Hasil Uji Paving Block	61
4.2.1 Perhitungan Berat Benda Uji	61
4.2.2 Perhitungan daya serap Air	64
4.2.3 Pengukuran densitas	65
4.2.4 Pengujian kuat tekan	67
BAB V KESIMPULAN DAN SARAN	69
5.1 Kesimpulan	69
5.2 Saran	70
DAFTAR PUSTAKA	71
LAMPIRAN	72

DAFTAR TABEL

Tabel 2.1 Mutu Kuat tekan Paving Block	13
Tabel 3.1 Nilai FAS	42
Tabel 3.2 Penetapan nilai Slump	42
Tabel 3.3 Perkiraan Kebutuhan Air	43
Tabel 3.4 Kebutuhan Benda Uji Kubusi	45
Tabel 3.5 Kebutuhan Benda Uji Paving Block	45
Tabel 4.1 Berat benda Uji	51
Tabel 4.2 Pemeriksaan Penyerapan Air	52
Tabel 4.3 Pemeriksaan Densitas	56
Tabel 4.4 Pengujian Kuat Tekan	59
Tabel 4.5 Hasil Berat Benda Uji Paving block	62
Tabel 4.6 Pemeriksaan penyerapan Air Paving Block	64
Tabel 4.7 Pengukuran Densitas Paving block	66
Tabel 4.8 Kuat tekan paving block	69

DAFTAR GAMBAR

Gambar 2.1 Batu Pecah	18
Gambar 2.2 Cangkang siput	22
Gambar 3.1 Diagram Alir	38
Gambar 3.2 Grafik Hubungan Kuat tekan Dan Fas.	41
Gambar 3.3 Uji Slump.	44
Gambar 3.4 Perkiraan Berat Jenis Beton Basah	45
Gambar 4.1 Grafik penyerapan air	55
Gambar 4.2 Grafik densitas.	59
Gambar 4.3 Grafik Kuat Tekan.	63
Gambar 4.4 Grafik Penyerapan Air Paving Block	65
Gambar 4.5 Grafik Densitas paving block	67
Gambar 4.6 Grafik Kuat Tekan paving Block	69

BABI

PENDAHULUAN

1.1. Latar Belakang

Dalam bidang Teknik Sipil Perkerasan pada Jalan dapat dibedakan menjadi dua jenis yaitu kontruksi perkerasan lentur (flexible pavement) yang didalamnya digunakan bahan aspal sebagai bahan pengikatnya dan konstruksi perkerasan kaku (rigid pavement) yang bahan ikatnya adalah semen. Paving Block merupakan salah satu bahan bangunan yang di gunakan sebagai lapisan struktur jalan selain aspal dan beton. Dari berbagai macam alternatif bahan penutup permukaan tanah Penggunaan paving block dapat menjadi salah satu alternatif untuk dalam perkerasaan jalan, hal itu dikarenakan paving block memiliki beberapa keunggulan diantaranya perkerasan dengan paving block lebih ringan dari segi bobot maupun pembiayaannya. Masih dapat menyerap air diatas permukaanya dan memiliki banyak variasi bentuk dan warna corak serta kekuatanya.

Seperti yang di jelasakan vaping block lebih efektif dijadikan sebagai bentuk perkerasan. Seiring dengan perkembangan pembangunan perumahan sebagai bentuk pembangunan tempat huni. selain itu Juga pembangunan rumah tersebut berbanding lurus dengan pembuatan perkerasan jalan yang di lakukan pada setiap komplek perumahan sebagai sarana jalan yang biasa membutuhkan perkerasan baik berupa perkerasan lentur maupun perkerasan kaku. Disinilah fungsi dari *paving block* dapat termaksimalkan. Umumnya pekerasaan pada pembangunan perumahan ialah jenis perkerasaan kaku dengan menggunakan paving block hal ini dikarenakan, mudah dalam pengerjaan, dan tidak di butuhkan

tenagga ahli serta alat berat yang biasa di gunakan pada perkerasan lentur dengan menggunakan bahan ikat aspal jika nantinya syatu saat ada terjadinya penambahan ukuran maupun bangunan memudahkan dalam pembongkaranya. Memingat banyaknya permintaan paving block oleh depelover perumahan membuat banyaknya Masyarakat beralih profesi sebagai pembuat paving block. Banyaknya para perajin *paving block* serta jumlah permintaan yang tinngi seharusnya dapat berinovasi dalam bahan sehingga berpengaruh terhadap kwalitas *paving block* itu sendiri, sebagai cara untuk mengurangi penggunaan Agregat atau sebagai bahan pengganti alternatif.

Mengingat Indonesia merupakan Negara maritim. Dengan hasil laut yang melimpah sehingga perlunya pengolahan limbah baik itu limbah dapur, maupun industri restoran yang memanfaatkan kerang, siput, kepah dll, sebagai bahan makannya sehingga perlunya pengolahan limbah daridari hewan air tersebut sehingga dapat termanfaatkan. seperti cangkang siput agar termanfaatkan dan mempunyai nilai guna. Dan Seiring dengan perkembangan zaman. perkerasan dilakukan dengan menggunakan paving block dengan banyak dikembangkan masyarakat, akan letapi perlu dikembangkan pembuatan variasi bahan tambah pada vaping block tersebut dengan mengunakan limbah yang ada sehingga dapat mengurangi produksi limbah yang ada dan memanfaatkannya menjadi bentuk yang bisa termanfaatkan, salah satunya dengan pemanfatan cangkang siput sebagai bahan tambah pada pembuatan paving block memingat Indonesia merupakan Negara Maritim dengan asil laut yang melimpah namun kurang dapat memanfaatkan cangkang-Cangkang siput baik yang mati maupun dari sisa dari

bahan pangan rumah tangga dan restoran yang sering di jumpai pada wilayah pantai.

Sangatlah penting kita dapat memanfaatkan bahan di alam yang dapat dimanfaatkan yang sifatnya dapat berkembang biak kembali dan juga dapat mendaur ulang limbah yang ada seperti cangkang siput tersebut menjadi sesuatu yang bermanfat sebagai bahan tambah pada pembuatan paving block, ini merupakan salah satu upaya yang dilakukan untuk memanfaatkan limbah organic yang sulit dan membutuhkan waktu untuk teruai dengan tanah.

1.2 Maksud dan Tujuan Penelitian

Maksud dari penelitian ini ialah Memanfaatkan limbah yang terdapat di sekitaran ptempat tinggal nelayan atau dari restoran makanan laut

Tujuan dari penelitian ini ialah untuk mengetahui pengaruh penambahan pecahan cangkan siput terhadap kuat tekan, densitas, penyerapan air Pada paving block, serta mengetahui komposisi terbaik dari hasil percobaan pemanfaatan pecahan cangkang siput sebagai pengganti agregat kasar yang mengacu pada peraturan mutu paving block.

Rumusan Masalah

Rumusan masalah pada Skripsi penambahan cangkang siput sebagai bahan tambah agregat kasar pada pembuatan paving block adalah untuk mengetahui Kuat tekan terhadap *paving block* yang diberi pecahan cangkang siput, serta mengetahui bagaimana efek cangkang siput terhadap paving block dengan perbandingan penambahan sebanyak 20 % dan 50% cangkan siput pada *paving blok* tersebut

1.3 Batasan Masalah

Batasan masalah pada pengujian ini adalah mengetahui perbedaan kuat tekan *paving block* dengan bahan tambahan pecahan cangkang siput dengan *paving block* biasa

1.4 Manfaat

Pengerjaan laporan akhir ini diharapkan dapat memberikan manfaat setidaknya:

Mengetahui kuat tekan *paving block* dengan bahan tambahan cangkang siput sehinnga nantinya dapat mengetahui Perbandingan antara *paving block* dengan cangkang siput dan tanpa penambahan pecahan cangkang siput dan sekaligus juga sebagai peemanfaatkan limbah cangkang siput yang ada sehingga dapat bermanfaat.

1.6 Sistemmatika Penulisan

Sistemmatika skripsi terdiri atas 5 (lima) bab, yaitu

BAB 1 : PENDAHULUAN

Pada bab ini antara lain membahas latar belakang,maksud dan tujuan perumusan masalah, batasan masalah ,Manfaat penelitian dan system matika penulisan

BAB II : TINJAUAN PUSTAKA

Pada bab ini membahas tentang dasar dasar teori tinjauan khusus dari paving block, bahan paving block, serta studi literature yang ada.

BAB III: METODOLOGI PENELITIAN

Dalam metodologi penelitian dijelaskan hal – hal apa saja yang dilakukan dalam penelitian ini serta langkah kerjanya

BAB IV: PENELITIAN DAN PEMBAHASAN

Pada bab ini berisi tentang pengerjaan paving block dengan pengujian kuat tekannya

BAB V : KESIMPULAN

Berisi tentang kesimpulan dari apseluruh kegiatan penelitian yang dilakukan, serta penambahan saran-saran yang di prruntukan untuk kelanjutan penelitian

BAB II

TINJAUAN PUSTAKA

2.1 Paving block

Paving blok adalah batu cetak yang berasal dari campuran bahan bangunan berupa pasir dan semen PC dengan perbandingan campuran tertentu, sedangkan menurut SNI 03-0691-1996 "Merupakan kombinasi bahan yang dibuat dari campuran semen portland atau bahan perekat hidrolis atau bahan perekat hidrolis sejenisnya air dan agregat dengan atau tanpa bahan tambah lainnya yang tidak mengurangi mutu bata beton itu". Penggunaaan hal itu di karenakan kian banyak digunakan di karenakan paving block mempunyai beberapa variasi bentuk untuk memenuhi selera pemakai. Penggunaan paving blog ini disesuaikan dengan tingkat kebutuhan, dan kemudahan pengaplikasian yang dapat di kerjakan sendiri dengan teknik menyusun dan mengkunci sesuai dengan SK SNI T – 04 – 1990 – F "paving block adalah segmen segmen kecilyang terbuat dari beton dengan bentuk segi empat atau segi banyak yang dipasang sedemikian rupa sehingga saling mengunci", misalnya saja untuk halaman rumah tentu berbeda dengan jalan maupun halaman parkir, karena mutu paving yang digunakan berbeda. Untuk jalan atau halaman parkir mutu paving yang digunakan lebih baik dibanding dengan halaman rumah karena muatan yang bekerja tidak sama.

Banyak alasan kenapa orang suka menggunakan paving blok, misalnya saja saat siang hari halaman yang menggunakan paving blok tetap lebih nyaman (tidak terlalu panas) bila dibandingkan dengan halaman yang menggunakan aspal atau cor beton. Paving blok mempunyai beberapa variasi bentuk yang indah,

pemasangan dan perawatannya pun juga sangat mudah. Selain itu paving blok juga dapat diproduksi sendiri den

Paving block banyak diaplikasikan untuk perkerasan jalan, seperti trotoar, areal parkiran, jalanan perumahan, areal pelabuhan, taman, dan lain-lain.

Penggunaan paving block memiliki beberapa keunggulan, yaitu : Keberadaan paving block bisa menggantikan aspal dan pelat beton, dengan banyak keuntungan yang dimilikinya. Paving block mempunyai banyak kegunaan diantaranya sebagai terminal bis,parkir mobil, pejalan kaki, taman kota, dan tempat bermain. Penggunaan paving block memiliki beberapa keuntungan, antara lain :

- a. Dapat diproduksi secara massal.
- b. Dapat diaplikasikan pada pembangunan jalan dengan tanpa memerlukan keahlian khusus.
- c. Pada kondisi pembebanan yang normal paving block dapat digunakan selama
 - masa-masa pelayanan dan paving block tidak mudah rusak.
- d. Paving block lebih mudah dihamparkan dan langsung bisa digunakan tanpa harus menunggu pengerasan seperti pada beton.
- e. Tidak menimbulkan kebisingan dan gangguan debu pada saat pengerjaannya.
- f. Paving block menghasilkan sampah konstruksi lebih sedikit dibandingkan penggunaan pelat beton.
- g. Adanya pori-pori pada paving block meminimalisasi aliran permukaan dan memperbanyak infiltrasi dalam tanah.

- h. Perkerasan dengan paving block mampu menurunkan hidrokarbon dan menahan logam berat.
- i. Paving block memiliki nilai estetika yang unik terutama jika didesain dengan
 - pola dan warna yang indah.
- j. Perbandingan harganya lebih rendah dibanding dengan jenis perkerasan konvensional yang lain.
- k. Pemasangannya cukup mudah dan biaya perawatannya pun murah
- 1. Mempunyai durabilitas yang baik

Dalam pembuatan paving block dikenal dengan dua metode, yaitu metode konvensional (manual) dan metode mekanis. Metode konvensional adalah metode yang paling banyak digunakan oleh masyarakat karena lebih mudah dan tidak memerlukan biaya yang terlalu tinggi. Pembuatan paving block dengan cara konvensional ini biasanya menggunakan alat cetak paving yang disebut "gablokan Alat ini masih menggunakan tenaga manusia (manual) dalam proses pemadatan sehingga kekompakan paving block yang dihasilkan bergantung pada tenaga orang yang memadatkannya. Mutu paving block yang dihasilkan dengan metode ini biasanya masuk ke dalam kelas mutu C dan D. Sementara itu, metode mekanis atau biasa disebut dengan metode press, menggunakan alat press paving yang harganya cukup mahal sehingga hanya biasa digunakan oleh pabrik dengan skalasedang atau besar. Namun demikian, mutu paving block yang dihasilkan dengan metode ini lebih baik, yaitu antara mutu C hingga mutu A,

2.2 Jenis Paving Blok

Ukuran dan bentuk pada paving belok sangat lah bervariasi , hal ini sangatlah memudahkan konsumen dalam menentukan kebutuhan penggunaan paving block, baik ketebalan,bentuk,kekuatan serta penerapannya sengga dapat memenuhi kebutuhan konsumen . serta dengan bentuk dan ketebalan yang berbeda beda sesuai dengan bentuk dan ketebalan yang dibutuhkan, Mulai dari 6,8 serta 10 cm sesuai dengan kebutuhan ketebalan dan kuat dan kebutuhan kuat tekannya.

Dengan pannja mulai 20 – 25 cm serta tebal 10 -12 cm. Dengan bentuk yang bermacam macam dan bervariasi.

a. Paving block / conblock tipe Batu

Ukuran dimensi : 10,5 cm x 21 cm, keterabalan : 6 cm, 8 cm, 10 cm, 44 pcs isi dalam 1 m2, warna : abu – abu, merah / hitam.

b. Paving block / conblock tipe Cacing

Ukuran dimensi: 11,5 cm x 22,5 cm, ketebalan: 6 cm, 8 cm, 10 cm, 39 pcs isi dalam 1 m2, warna: abu – abu, merah / hitam.

c. Paving block / conblock tipe Segitiga

Ukuran dimensi : 19,7 cm x 9,6 cm, ketebalan : 6 cm, 8 cm, 10 cm, 39 pcs isi dalam 1 m2, warna : abu – abu, merah / hitam

d. Paving block / conblock tipe Segienam

Ukuran dimensi : 20 cm x 20 cm, ketebalan : 6 cm, 8 cm, 10 cm, 27 pcs isi dalam 1 m2, warna : abu – abu, merah / hitam

e. Paving block / conblock tipe Grassblock L8

Ukuran dimensi : 30 cm x 45 cm, ketebalan : 6 cm, 8 cm, 7,5 pcs isi dalam 1 m2, warna : abu – abu, merah / hitam.

f. Paving block / conblock tipe Grassblock L5

Ukuran dimensi : 40 cm x 40 cm, ketebalan : 8 cm, 6.25 pcs isi dalam 1 m2, warna : abu – abu, merah / hitam.

g. Paving block / conblock tipe topi uskup

Ukuran dimensi: 30 cm x 6 cm x 21 cm, ketebalan: 6 cm, 8 cm, 10 cm, 25 pcs isi dalam 1 m2, warna: abu – abu, merah / hitam.

Spesifikasi di atas merupakan ukuran standar, tergantung pengguna akan menggunakan jenis dan warna sesuai dengan keinginan.

2.3 Syarat Mutu Paving block

Menurut SNI-03-0691-1996, syarat mutu bata beton (Paving block).

Sebagai berikut:

- a. Sifat tampak paving block untuk lantai harus mempunyai bentuk yang sempurna,tidak terdapat retak-retak dan cacat, bagian sudut dan rusuknya tida kmudah direpihkan dengan kekuatan jari tangan.
- b. Bentuk dan ukuran paving block untuk lantai tergantung dari persetujuan antara pemakai dan produsen. Setiap produsen memberikan penjelasan tertulis dalam leaflet mengenai bentuk, ukuran, dan konstruksi pemasangan paving block untuk lantai.

Penyimpangan tebal paving block untuk lantai diperkenankan kurang lebih 3 mm.

c. Paving block untuk lantai apabila diuji dengan natrium sulfat tidak boleh cacat, dan kehilangan berat yang diperbolehkan maksium 1%.

Menurut Candra (2012), persyaratan ketebalan paving block pada umumnya adalah sebagai berikut :

- a Sifat tampak
 - 6 cm, digunakan untuk beban lalu lintas ringan dengan frekuensi terbatas, misalnya : sepeda motor, pejalan kaki.
 - 8 cm, digunakan untuk beban lalu lintas sedang atau berat dan padat frekuensinya, misalnya : mobil, pick up, truk, dan bus.
 - 10 cm, digunakan untuk beban lalu lintas super berat, misalnya: tronton, loader.

Berdasarkan SK SNI T - 04 - 1990 - F, klasifikasi paving block didasarkan atas bentuk, tebal, kekuatan, dan warna. Klasifikasi tersebut antara lain:

Klasifikasi berdasarkan bentuk Bentuk paving block secara garis besar terbagi atas dua macam, yaitu :

- a. Paving block bentuk segi empat
- b. Paving block bentuk segi banyak

Pola pemasangan sebaiknya disesuaikan dengan tujuan penggunaannya. Pola yang umum dipergunakan ialah susun bata (*strecher*), anyaman tikar (*basket weave*), dan tulang ikan (*herring bone*). Untuk perkerasan jalan diutamakan pola tulang ikan karena mempunyai kuncian yang baik. Dalam proses pemasangannya, paving block harus berpinggul dan pada tepi susunan paving block biasanya ditutup dengan pasak yang berbentuk topi uskup

Klasifikasi berdasarkan ketebalan

Ketebalan paving block ada tiga macam, yaitu:

- a. Paving block dengan ketebalan 60 mm
- b. Paving block dengan ketebalan 80 mm
- c. Paving block dengan ketebalan 100 mm Pemilihan Paving block dengan ketebalan 100 mm Pemilihan bentuk dan ketebalan dalam pemakaian harus disesuaikan dengan rencana penggunaannya dan kuat tekan paving block tersebut juga harus diperhatikan.

Klasifikasi berdasarkan kekuatan Pembagian kelas paving block berdasarkan mutu beton dapat dilihat pada tabel 2.1 berikut:

Tabel 2.1 Mutu kuat tekan paving block

Mutu	Kuat tekan(Mpa)		Penyerapan Air rata rata maks%
	Rata rata	min	
A	40	35	3
В	20	17	6
С	15	12,5	8
D	10	8,5	10

Sumber: SNI 03-0691-1996

Klasifikasi berdasarkan warna Warna yang tersedia di pasaran antara lain abu-abu, hitam, dan merah. Paving block yang berwarna kecuali untuk menambah keindahan juga dapat digunakan untuk memberi batas pada perkerasan seperti tempat parkir, tali air, dan lain-lain.

Paving block memiliki beragam kekuatan dan klasifikasi penggunaan

- 1. Paving block mutu A digunakan untuk Jalan
- 2. Paving block mutu B digunakan untuk pelataran parkir
- 3. Paving block mutu C digunakan untuk pejalan kaki.
- 4. Paving block mutu D digunakan untuk taman dan kegunaan lain.

Paving block yang diproduksi secara manual biasanya termasuk dalam mutu beton kelas D atau C yaitu untuk pemakaian non struktural seperti untuk taman dan penggunaan lain yang tidak diperlukan untuk menahan beban diatasnya. Mutu paving block yang pengerjaannya dengan menggunakan mesin pres dapat dikategorikan ke dalam mutu beton kelas C sampai A dengan kuat tekan diatas.

2.4 Mix Design Paving Block atau Matrial Penyusun Paving Block

1. Semen

Semen pertama kali di temukan oleh bangsa romawi , lalu di lakukan pengujian dan pengembangan oleh J. Parker, dan pada awal abad ke — 19 Sbahan tersebut digunakan di Inggris dan kemudian Perancis . Kontruksi pertama yang di kerjakan berupa pembangunan jembatan betton tak bertulang di Prancis. Asal Mula nama semen portland (portland cement) Di usulkan oleh Joseph Aspdin pada tahun 1824 dikarenakan semen bubuk pertama kali di olah di pulau Portland Amerika Serikat. Semen secara umum adalah hasil industry dari paduan bahan baku : batu kapur / gamping sebagai bahan utama dan tanah lempung . bahan bahan penyusun semen terdiri dari bahan — bahan yang terutama mengendung kapur , seperti , kapur, silica, alumina,oksida sulfur, dan potash besi , magnesia,Massa jenis semen di Indonesia Berkisar antara 3-3,15 gr/ m3 Umumnya Semen Portland didefinisikan sebagai semen hidrolik yang dihasilkan dengan menggiling klinker yang terdiri dari kalsium silikat hidrolik, yang umumnya mengandung satu atau lebih bentuk kalsium sulfat sebagai bahan tambahan yang digiling bersama-sama dengan bahan utamanya.

Fungsi utama semen adalah mengikat butir-butir agregat hingga hingga membentuk suatu massa padat dan mengisi rongga-rongga udara di antara butir-butir agregat. Semen yang digunakan di Indonesia harus memenuhi syarat SII.0013-81. Portland cement (PC) atau lebih dikenal dengan semen berfungsi membantu pengikatan agregat halus dan agregat kasar apabila tercampur dengan air. Selain semen juga mampu mengisi rongga-rongga antara agregat tersebut. Adapun sifat-sifat semen adalah sebagai berikut:

-. Sifat Kimia

Semen Kadar kapur yang tinggi tetapi tidak berlebihan cenderung memperlambat pengikatan, tetapi menghasilkan kekuatan awal yang tinggi. Kekurangan zat kapur menghasilkan semen yang lemah, dan bilamana kurang sempurna pembakarannya, menyebabkan ikatan yang cepat (L.J. Murdock dan K.M. Brook,1979). Sifat kimia serta komposisi semen sesuai Teknologi Beton (Tri Mulyono, 2004)

-. Sifat Fisik

Semen Sifat fisik Semen portland yaitu:

- a. Kehalusan butir Semakin halus semen, maka pemukaan butirannya akan semakin luas, sehingga persenyawaanya dengan air akan semakin cepat dan membutuhkan air dalam jumlah yang besar pula. Pada umumnya semen memiliki kehalusan sedemikian rupa sehingga kurang lebih 80% dari butirannya dapat menembus ayakan 44 mikron. Makin halus butiran semen, makin cepat pula persenyawaannya. Makin halus butiran semen, maka luas permukaan butir untuk suatu jumlah berat semen akan menjadi lebih besar. Makin besar luas permukaan butir ini maka makin bnyak pula air yang di butuhkan.
- b. Berat Jenis Berat jenis dari bubuk semen pada umumnya berkisar antara 3,10 sampai 3,30. biasanya rata-rata berat jenis ditentukan 3,15. berat jenis semen penting untuk diketahui, karena semen portland yang tidak sempurna pembakarannya dan atau dicampur dengan bubuk batuan lainnya, berat jenisnya akan terlihat lebih rendah daripada angka tersebut. Untuk mengukur

2. Agregat

Agregat dapat dibedakan menjadi dua jenis yaitu Agregat alam dan agregat buatan (pecahan). Agregat alam dan pecahan dapat di bedakan berdasarkan beratnya , asalnya , diameter butir gradasinyan serta tekstur permukaannya (Teknologi Beton Ir. Tri Mulyono, MT)

Agregat halus atau pasir adalah butiran-butiran mineral keras yang bentuknya mendekati bulat, tajam dan bersifat kekal dengan ukuran butir sebagian besar terletak antara 0,07-5 mm (SNI 03-1750-1990). Agregat memiliki banyak klasifikasi berdasarkan bentuknya

Agregat bulat, agregat bulat sebagian atau tidak teratur, agregat bersudut, agregat panjang, agregat pipih, agregat pipih dan panjang semua penjelasan klasifikasi agregat tertulis di teknologi beton.

Agregat halus Normal kmenurut SII.0052

Modulus halus butiran 1.5 - 3.8

Kadar lumpur atau bagian yang lebih kecil dari 70 mikron (0,074 mm) maksimum 5%

Kadar zat organik yang terkandung yang di tentukan dengan mencampur agregat halus dengan larutan natrium sulfat (Na2sO4)3%dari pada warna standar

Kekerasan butiran jika dibandingkan dengan kekerasan butir pasir pembanding yang berasal dari pasir kwarsa memberikan angka tidak lebih dari 2.20

Kekekalan (jika di uji dengan natrium sulfat bagian yang hancur maksimum 10% dan jika di pakai magnesium sulfat maksimum 15 %). Agregat halus digunakan sebagai bahan pengisi dalam campuran paving block sehingga dapat

meningkatkan kekuatan, mengurangi penyusutan dan mengurangi pemakaian bahan pengikat/semen. Pasir adalah salah satu dari bahan campuran beton yang diklasifikasikan sebagai agregat halus. Yang dimaksud dengan agregat halus adalah agregat yang lolos saringan no.10 dan tertahan pada saringan no.200.

3. Air

Fungsi air pada campuran paving block adalah untuk membantu reaksi kimia yang menyebabkan berlangsungnya proses pengikatan.

Persyaratan air sesuai Peraturan Beton Bertulang Indonesia 1971 adalah sebagai berikut:

- a Tidak mengandung lumpur (atau benda melayang lainnya) lebih dari 2gram/ liter
- b Tidak mengandung garam-garam yang dapat merusak beton (asam, zat organik, dan sebagainya) lebih dari 15 gram/liter.
- c Tidak mengandung klorida (Cl) lebih dari 0.5 gram/liter.
- d Tidak mengandung senyawa-senyawa sulfat lebih dari 1 gram/liter.

 Pemakaian

Sedangkan syarat mutu air menurut british standard (Bs.3148-80) yaitu:

- a Kandungan garam garam organik pada air yang di gunakan tidak boleh lebih besar dari 2000 mg per liter, hal itu di karenakan garam garam organik tersebut dapat menyebabkan penurunan kekuatan beton
- b Air pada beton yang mengandung 1250 ppm natrium sulfat ,Na2SO4.10H2O dapat digunakan dengan hasil yang memuaskan
- c Air asam , semakin tinggi kadar ph pada air maka semakin sulit kita memngelola pengerjaan beton.

- d Kandungan basa atau natrium hidroksida pada air lebih tinggi dari 0.5% akan mempengaruhi kekuatan beton.
- e Kandungangula pada air sebanyak 0,25% dari berat semen atau lebih kurangnya kekuatan beton pada umur 28 hari.
- f Kandungan minyak pada air 2% dari berat semen dapat mengurangi kekuatan beton hingga 20%
- g Rumpunlaut yang tercampur pada air dapat mengurangi kekuatan beton secara signifikan
- h Kandungan zat organik baik lempung maupun lanau dapat mempengaruhi ikatan semen dan kekuatan beton
- i Air yang tercemar limbah industri diatas 20ppm tidak baik untuk di gunakan.
 Air yang dapat diminum biasanya dapat dipakai pula untuk bahan campuran beton atau paving block ini

4. Batu Pecah / split

Gambar 2.1 Batu Pecah data Penelitian

Batu pecah adalah salah satu jenis batu matreal bangunan yang diperoleh dengan cara membelah atau memecah batu yang berukuran besar menjadi ukuran kecil-kecil. Batu pecah juga sering disebut dengan nama batu belah, karena disesuaikan dengan proses mendapatkannya yaitu dengan cara membelah batu.

Secara umum fungsi utama *batu pecah* adalah sebagai bahan campuran utama untuk pembuatan beton cor. Selaian *batu pecah*, bahan pembuatan beton cor adalah pasir dan semen. Proses pembuatan beton cor ini adalah dengan mencampur *batu pecah*, pasir dan semen dengan menggunakan media air. Setelah tercampur maka adonan ini dicetak sesuai dengan peruntukannya. Namun demikian setelah melihat jenis ukuran *batu pecah*, ternyata fungsinya tidak hanya sebagai bahan campuran beton cor saja tetapi juga berfungsi untuk keperluan yang lain.

Untuk mendapatkan *batu pecah*, bongkahan batu yang diperoleh dari hasil penambangan akan dibelah dengan mensin penghancur (*crusher machine*). Bongkahan batu yang dihancurkan tersebut akan menghasilkan *batu split* berbagai macam ukuran. Batu yang sudah dihancurkan (*crushed*) tersebut kemudian akan dikelompokkan dan di sortir ukuranya.

Berikut kami sampaikan jenis ukuran *batu pecah* dan fungsinya. Jenis-jenis ukuran *batu pecah* yang umum diperjualbelikan di pasaran :

1. Batu pecah Ukuran 0 - 5 mm (mili meter). Jenis ini sering disebut juga dengan istilah Abu Batu. Ukuran ini merupakan jenis ukuran yang paling lembut, ukuran partikelnya menyerupai pasir lembut. Batu pecah jenis ukuran ini banyak dibutuhkan untuk campuran dalam proses pengaspalan atau dapat digunakan sebagai pengganti pasir. Material batu pecah ukuran ini merupakan bahan utama untuk pembuatan gorong-gorong dan batako press Batu pecah Ukuran 5 - 10 mm (mili meter) atau disebut juga dengan batu pecah ukuran 3/8 cm (centi meter). Material batu pecah jenis ini banyak digunakan untuk campuran dalam proses pengaspalan jalan,

- mulai dari jalan yang ringan sampai jalan kelas 1. *Batu pecah* jenis ukuran ini akan dicampur dengan aspal menjadi *Aspal Mixed Plant* atau secara umum disebut dengan *aspal hot mixed*.
- 2. Batu pecah Ukuran 10 20 mm (mili meter). Material batu pecah jenis ini banyak digunakan untuk bahan pengecoran segala macam konstruksi, mulai dari konstuksi ringan sampai konstruksi berat. Bangunan-bangunan yang menggunakan beton cor dari bahan batu pecah ukuran ini antara lain Jalan Tol, Gedung bertingkat, Landasan Pesawat Udara, Bantalan Kereta Api, Pelabuhan dan Dermaga, Tiang Pancang dan Jembatan dan sebagainya.
- 3. *Batu pecah* Ukuran 20 30 mm (mili meter). Material *batu pecah* jenis ini banyak digunakan untuk bahan pengecoran lantai dan pengecoran atau pembetonan horizontal yang lain.
- 4. *Batu pecah* Ukuran 30 50 mm (mili meter). Material *batu pecah* jenis ini biasanya digunakan untuk dasar badan jalan sebelum menggunakan material yang lain, penyangga bantalan kereta api, penutup atau pemberat pipa didasar laut, beton cor pemecah ombak dan lain-lain.
- 5. *Batu Pecah* jenis Agregat A. Matreal *batu pecah* ini termasuk dalam jenis *sirtu. Batu pecah jenis Agregat A* ini merupakan campuran antara beberapa jenis ukuran batu pecah. Bahan campurannya terdiri dari abu batu, pasir, batu pecah ukuran 10-20 mm, batu split ukuran 20-30 mm dan batu split ukuran 30-50 mm. Pencampuran bahan ini tidak ada pedoman komposisi yang pasti atau baku dari masing-masing bahan. Komposisi disesuaikan dengan jenis penggunaannya. *Batu pecah jenis Agregat A* ini

- pada umumnya digunakan sebagai bahan pengecoran dinding, pembuatan dinding dan campuran bahan beton cor.
- 6. *Batu pecah* Jenis Agregat B. Matreal *batu pecah* ini termasuk dalam jenis *sirtu. Batu pecah jenis Agregat B* ini merupakan campuran antara beberapa jenis ukuran baru split. Bahan campurannya terdiri dari tanah, abu batu, pasir, batu split ukuran 10-20 mm, batu split ukuran 20-30 mm dan batu split ukuran 30-50 mm. Bahan Tanah merupakan pembeda komposisi dengan *batu pecah jenis Agregat A*. Pencampuran bahan ini tidak ada pedoman komposisi yang pasti atau baku dari masing-masing bahan. Komposisi disesuaikan dengan jenis penggunaannya. *Batu pecah jenis Agregat B* ini pada umumnya digunakan untuk bahan timbunan awal pengerasan jalan dengan tujuan untuk meratakan dan mengikat lapisan *batu pecah* yang digelar pada lapisan di atasnya.
- 7. Batu pecah Jenis Agregat C. Campuran matreal *batu pecah* ini sering disebut *batu asalan. Batu pecah jenis Agregat C* ini merupakan campuran antara beberapa jenis ukuran baru split. Bahan campurannya terdiri dari tanah, abu batu, pasir, batu split apa saja dan dengan komposisi yang tidak beraturan. *Batu pecah jenis Agregat C* ini pada umumnya digunakan untuk bahan timbunan untuk pengurukan lahan, reklamasi dan lain-lain.
- 8. Batu Gajah. Batu jenis inisering disebut dengan *boulder elephant stone*. Batu gajah merupakan salah satu jenis batu pecah yang mempunyai ukuran paling besar dibandingkan dengan jenis batu pecah yang lain. Batu gajah berfungsi untuk menimbun lahan atau lokasi yang berdekatan dengan pantai. *Batu gajah* ini biasanya digunakan untuk membuat bahan

beton pemecah ombak, bahan reklamasi pantai, bahan untuk membuat dermaga kecil atau yang paling umum digunakan untuk bahan pondasi bangunan.

5. Cangkang Siput

Gambar 2.2 Cangkang Saiput Data Penelitian

Gastropoda berasal dari bahasa Yunani yaitu gaster yang berarti perut dan podos yang berarti kaki. Jadi Gastropoda berarti hewan bertubuh lunak yang berjalan dengan menggunakan perutnya. Hewan ini meliputi 50.000 spesies, tetapi 15.G000 di antaranya telah punah. Hewan ini tersebar di seluruh permukaan bumi, baik di darat, di air tawar, maupun di air laut. Pada umumnya, hewan ini bersifat herbifor, sering memakan sayuran budidaya sehingga merugikan manusia. Namun, akhir-akhir ini beberapa gastropoda telah dicobakan menjadi bahan makanan, karena kandungan proteinnya tinggi, misalnya bekicot (achatina fulica) dan beberapa jenis siput.

Gastropoda ada yang memiliki cangkang tunggal, ganda, atau tanpa cangkang. Bentuk cangkangnya bervariasi, ada yang bulat, bulat panjang, bulat kasar, atau bulat spiral. Cangkang umumnya spiral asimetri.fungsi cangkang untuk melndungi kepala, kaki, dan alat dalam. Pada keadaan bahaya, cangkang

ditutup oleh epifragma. Di bagian dalam cangkang terdapat mantel yang mambungkus seluruh tubuh gastropoda. Mantel ini tebal, kecuali pada baian dekat kaki buasanya tipis. Matel berfungsi membentuk ekskresi untuk membentuk cangkang baru .Struktur Tubuh Gastropoda Tubuh larvanya bilateral simetri tetap ada perkembangan selanjutnya tubuh bagian belakang dan alat-alat dalamnya mengalami pembengkokan hampir membentuk lingkaran. Kecuali siput telanjng atau Vaginula, seluruh anggota tubuh Gastropoda terlindung oleh sebuah cangkang berkatup satu, sehingga disebut univalve.

Tubuh siput terdiri atas kepala dan badan. Struktur kepala sudah tampak jelas. Pada bagian ini terdapat dua pasang tentakel dan mulut. Tentekel yang terdapat di kepala tersebut meliputi sepasang tentakel dengan mata (khusus yang hidup di darat) dan sepasang tentakel untuk indra pembau.

Mulut Gastropoda telah berkembang baik. Letaknya di ujung anterior, dilengkapi dengan rahang dari zat tanduk serta lidah parut atau radula di dasar perutnya. Anus terletak di bagian anterior tubuh. Alat peredaran darah siput terdiri atas jantung dan pembuluh darah yang masih sederhana. Jantung terdiri atas serambi dan ventrike yang terletak dalam rongga parikardial. Peredaran darah merupakan system peredaran darah terbuka

Alat respirasi Gastropoda berupa insang bagi yang hidup di air dan paru pulmonum bagi yang hidup di darat. Di samping itu, kadang-kadang rongga mantel juga dapat melakukan fungsi respirasi. Pulmonum merupakan jalinan antara pembuluh-pembuluh darah yang berhubungan langsung dengan jantung. Alat ekskresinya berupa ginjal yang terdapat di dekat jantung. Ginjal ini memiliki saluran ekskresi yang bermuara pada mantel. System saraf Gastropoda terdiri atas

tiga pasang, yaitu ganglion visceral, ganglion pedal, dan ganglion serebral. Di bawah ganglion pedal terdapat sepasang alat keseimbangan atau statosit..

Sehingga secara harpiah dapat dikatakan Nama siput umum yang diberikan untuk anggota kelas moluska Gastropoda. Dalam arti sempit, istilah ini diberikan bagi mereka yang memiliki cangkang bergelung pada tahap dewasa. Dalam arti sempit, istilah ini diberikan bagi mereka yang memiliki cangkang bergelung pada tahap dewasa. Dalam arti luas, yang juga menjadi makna "Gastropoda", mencakup siput dan siput telanjang (siput tanpa cangkang). Kelas Gastropoda menempati urutan kedua terbanyak dari segi jumlah spesies Anggotannya setelah Insecta (serangga). Habitat, bentuk, tingkah laku, dan anatomi siput pun sangat bervariasi di antara anggota-anggotanya.

Cangkang siput umumnya tebentuk dari zat kapur atau CaCo3, dan juga chitin (C8H13O5N) itu sebabnya cangkanya sangat keras dengan berat jenis berkisar 2400 , hal ini lah yang mendorong untuk melakukan pemanfaatan cangkang siput mengingat Siput laut juga dapat di konsumsi sehingga menimbulkan sampah atau limbah dari cangkang nya tersebut . selain dapat mendaur ulang limbah penambahan cangkang siput pada paving blok ini juga dapat menjadi penerapan hal baru dan termanfatkan mengingat cangkang siput yag mudah didapat dan sipatnya berkembang biak atau terperbaharui. Diharapkan nantinya dengan penambahan pecahancangkang siput pada paving block tersebut dapat menambah daya kuat terhadap tekan sehingga dapat termanfaatkan dan di produksi secara massal.

2.5 Penelitian yang Telah Dilakukan

Dalam hal ini untuk dapat lebih memahami dari apa pengujian yang saya lakukan,maka diperlukan refrensi dalam melakukan ngujian ini berdasarkan pada jurnal serta skipsi yang berasal dari berbagai universitas di indonesia sebagai refrensi tambahan serta data sekunder yang tentunya dapat di gunakan untuk membantu dalam penulisan skripsi ini.

2.5.1 "Studi Kuat Tekan Paving Block Dengan Campuran Tanah Semen Dan Abu Sekam Padi Menggunakan Alat pemadat Modifikasi. (skripsi Universitas lampung ,Sherliana : 2016)

Menurutnya "Berdasarkan SNI 03-0691-1996, paving block dengan campuran 0 % digolongkan sebagai paving block dengan mutu D yang dapat digunakan sebagai taman dan pengguna lain. Sedangkan paving blockdengan campuran 1, 2,dan 3 % digolongkan ke dalam kategori mutu C yang dapat digunakan sebagai pejalan kaki.

pada umur 28 hari untuk campuran kerang 0,1,2, dan 3 % adalah sebesar 2.93, 5, 6.42, 4.77 Mpa.

pada umur 56 hari dengan campuran serbuk kerang 0,1, 2, dan 3 % adalah sebesar 15.05 %, 8.11%, 5.51%, 6.15 % dimana dapat dikategorikan ke dalam mutu C yaitu digunakan sebagai pejalan kaki dan terjadi penurunan absorbsi dari paving block seiring bertambahnya umur paving block".

2.5.2 Pengaruh Batu Pecah terhadap kuat Tekan Paving Block (jurnal Smart tek, Harun malisa)

"Berdasarkan hasil pengujian kuat tekan paving block yang telah dilakukan pada penelitian ini dapat diambil kesimpulan sebagai berikut :

komposisi campuran antara semen , pasir dan batu pecah untuk paving block yang tepat yaitu 1pc : 6 ps : 4bp, dimana pada campuran ini didapatkan kuat tekan yang maksimum yang berturut – turut sebesar 14,36 Mpa dan 14,16 Mpa. Namun lebih ekonomis padacampuran 1 pc : 6ps : 4bp karena batu pecah yang dibutuhkan lebih sedikit, Serta Makin besar ukuran batu pecah yang digunakan makin memperbesar kekuatan paving block. c. Penambahan batu pecah akan berpengaruh terhadap kuat tekan paving block. Hal ini jika ditinjau dari perbandingan yang sama antara semen dengan pasir yaitu 1 pc : 8ps tanpa tambahan batu pecah (seperti paving block yang ada di pasaran) didapatkan kuat tekan maksimum sebesar 5,25 Mpa, sedangkan yang ditambah batu pecah didapatkan kuat tekan maksimum sebesar 9,70 Mpa pada komposisi campuran 1 pc : 8ps : 4 bp dengan menggunakan batu pecah lolos ³/₄" tertahan ¹/₂" dan minimum 4,91 Mpa pada komposisi campuran 1pc : 8ps : 8bp dengan menggunakan batu pecah lolos saringan No. 3/8" tertahan saringan. No. 4."

2.5.3 Pemanfaatan Limbah Kulit Kerang Sebagai Bahan Campuran Pembuatan Paving Block (Skripsi Program Studi teknik Lingkungan Fakultas Teknik Sipil Dan Perencanaan Universitas Pembangunan Nasional "Veteran "Jatim . Erwin Wijaya Kusuma ,2012)

"Hasil percobaan menunjukan bahwa hasil terbaik dari pengujian penyerapan air dan uji kuat tekan paving block dapat dicapai pada rasio perbandingan pasir 80%, kulit kerang 20% dengan umur paving block 28 hari. Pada komposisi ini paving block memiliki kadar air 2,94% dan uji kut tekan 46,79Mpa yang memenuhi SNI 03-0691-1996. Untuk hasil terbaik dari

pengujianpenyerapan natrium sulfat paving block dapat dicapai pada rasio perbandingan pasir 100%, kulit kerang 0% dengan umur paving block 28 hari. Pada komposisi ini paving block memiliki penyerapan natrium sulfat yang sedikit sehingga tidakmudah rapuh yang memenuhi SNI 03-0691-1996 dengan hasil 0,05% yang memenuhi PP No. 85 Tahun 1999. "

2.5.4 Kulit Kerang Sebagai Bahan Subtitusi Agregat Kasar Untuk Paving Block Sesuai SII 0819-83(Skripsi Fakultas Teknik Universitas Tidar Magelang, Anis rahmawat, Muhamad Amin, 2010)

Hasil penelitian menunjukkan bahwa persentase penggunaan Kulit Kerang sebagai susbstitusi Kerikil paling optimal adalah15 % yang memenuhi syarat mutu Paving Block Kelas III untuk kuat tekan, penyempan air, dan kihilagan berat natrium sulfat sedangkan ketahanan aus tidak memenuhi Syarat.Pasir dan kerikil yang memprmyai gradasi yang baik akan menghasilkan paving block dengan kuat tekan yang baik.

2.5.5 Studi Sifat Mekanik Paving Block Terbuat dari Campuran Limbah Adukan Beton Dan Serbuk Kerang

"Kuat tekan untuk setiap variasi campuran di tes hingga benda uji berumur 28 hari. Untuk campuran kerang sebesar 0,1,2, dan 3 % didapatkan kuat tekan sebesar 11.1, 13.15, 13.94, 13.15 Mpa, Berdasarkan SNI 03-0691-1996, paving block

dengan campuran 0 % digolongkan sebagai paving block dengan mutu D yang dapat digunakan sebagai taman dan pengguna lain. Sedangkan paving blockdengan campuran 1, 2, dan 3 % digolongkan ke dalam kategori mutu C yang dapat digunakan sebagai pejalan kaki. Sedangkan Untuk Campuran Optimum

Campuran optimum penggunaan serbuk kerang adalah sebesar 2 % untuk kuat tekan, kuat lentur, dan absorbsi dari paving block.

Nilai modulus kehalusan dari pasir daur ulang beton adalah sebesar 1.934 dan pasir daur ulang beton dikategorikan masuk dalam zona 2 (agak kasar).

Kuat lentur dari paving block pada umur 28 hari untuk campuran kerang Nilai absorbsi dari paving block pada umur 56 hari dengan campuran serbuk kerang 0, 1, 2, dan 3 % adalah sebesar 15.05 %, 8.11%, 5.51%, 6.15 % dimana dapat dikategorikan ke dalam mutu C yaitu digunakan sebagai pejalan kaki dan terjadi penurunan absorbsi dari paving block seiring bertambahnya umur paving block

2.6 Pencetakan Benda Uji dan Curing

Cara Pembuatan dengan cetakan Kubus 15 x 15 x 15

Pembuatan dilakukan dengan melakukan pengukuran dimensi serta menghitung kebutuhan volume dan membuat bahan bakunya bentuk ini di tujukan untuk mencari kuat tekan yang akan di uji di labolatorium.

Cara pembuatan paving block yang biasanya digunakan dalam masyarakat dapat diklasifikasikan menjadi dua metode, yaitu :

1.Metode Konvensional

Metode ini adalah metode yang paling banyak digunakan oleh masyarakat kita dan lebih dikenal dengan metode pencetakan secara manual. Pembuatan paving block cara konvensional dilakukan dengan menggunakan alat cetakan paving block yang nantinya diatas alat tersebut akan diberi beban pemadatan yang berpengaruh terhadap tenaga orang yang mengerjakan. Metode ini banyak

digunakan oleh masyarakat sebagai industri rumah tangga karena selain alat yang digunakan sederhana, juga mudah dalam proses pembua tannya

sehingga dapat dilakukan oleh siapa saja Semakin kuat tenaga orang yang mengerjakan maka akan semakin padat dan kuat paving block yang dihasilkan. Dilihat dari cara pembuatannya, akan mengakibatkan pekerja cepat kelelahan karena proses pemadatan dilakukan dengan menghantamkan alat pemadat pada adukan yang berada dalam cetakan.

Curing adalah perlakuan atau perawatan terhadap paving block selama masa pembekuan. Pengukuran Curing diperlukan untuk menjaga kondisi kelembaban dan suhu yang diinginkan pada paving block , karena suhu dan kelembaban di dalam secara langsung berpengaruh terhadap sifat – sifat paving block. Pengukuran Cuing mencegah air hilang dari adukan dan membuat lebih banyak hidrasi semen. Untuk memaksimalkan mutu paving block perlu diterapkan pengukuran Curingsesegera mungkin setelah paving block dicetak. Curing merupakan hal yang kritis untuk membuat permukaan paving block yang tahan terhadap beban yang berat. Curing harus dibuat pada setiap bahan bangunan, bagian konstruksi atau produk yang menggunakan semen sebagai bahan baku. Hal ini karena semen memerlukan air untuk memulai proses hidrasi dan untuk menjaga suhu di dalam yang dihasilkan oleh proses ini demi mengoptimalkan pembekuan dan kekuatan semen. Pengaturan suhu di dalam dengan air disebut Curing.

Proses hidrasi yang tidak terkontrol akan menyebabkan suhu semen kelebihan panas dan kehilangan bahan - bahan dasar untuk pengerasan dan kekuatan akhir produk semen seperti beton, mortar, dan lain - lain. Curing yang

baik berarti penguapan dapat dicegah atau dikurangi. Secara umum ada 3 jenis utama Curing

yang digunakan pada sektor konstruksi, yaitu:

1.Curing air

Curing air adalah yang paling banyak digunakan. Ini merupakan sistem dimana sangat cocok untuk konstruksi rumah dan tidak memerlukan infrastruktur atau keahlian khusus. Bagaimanapun Curing air memerlukan banyak air yang mungkin tidak selalu mudah dan bahkan mungkin mahal. mengekonomiskan penggunaan air perlu dilakukan pengukuran untuk mencegah penguapan air pada produk semen. Misal beton harus dilindungi dari sinar matahari langsung dan angin untuk mencegah penguapan air yang cepat. Cara seperti menutubeton pasir, serbuk gergaji, rumput dan dedaunan tidaklah mahal, tetapi masih cukup efektif. Selanjutnya plastik, goni bisa juga digunakan sebagai bahan untuk Mencegah penguapan air dengan cepat. Sangat penting seluruh produk semen (batako, paving block, batu pondasi, bata pondasi, pekerjaan plaster, pekerjaan lantai, dll) dijaga tetap basah dan jangan pernah kering, jika tidak kekuatan akhir produk semen tidak dapat dipenuhi. Jika proses hidrasi secara dini berakhir akibat kelebihan panas (tanpa Curing), air yang disiram pada produk semen yang telah kering tidak akan mengaktifkan kembali proses hidrasi, kehilangan kekuatan akan permanen. Pada Curing air, produk semen harus dijaga tetap basah (misal dengan menutup produk dengan plastik) untuk lebih kurang 7 hari 24.

2. Curing uap air

Curing uap air dilakukan dimana air sulit diperoleh dan semen berdasarkan unsu -unsur bahan setengah jadi seperti slop toilet, ubin, tangga, jalusi dan lain-lain diproduksi masal. Curing uap air menurunkan waktu Curing dibandingkan dengan Curingair biasa lebih kurang sekitar 50 –60%. Prinsip kerja Curing uap air adalah dengan menjaga produk semen pada lingkungan lembab dan panas yang membolehkan semen mencapai kekuatan lebih cepat dari pada Curingair biasa. Untuk menghasilkan lingkungan lembab dan panas ini perlu dibuat suatu ruang pemanasan sederhana dengan dinding dan lantai penahan air yang ditutup dengan plastik untuk membuat matahari memanaskan ruang pemanasan dan mencegah air menguap. Tinggi permukaan air dari lantai sekitar 5 sampai 7 cm dijaga setiap waktu agar prinsip kerja sistem penguapan dapat bekerja.

3. Curing uap panas

Curing uap panas biasanya hanya digunakan pada pabrik yang sudah canggih yang memproduksi produk semen secara massal. Sistem Curing uap panas mahal dan membutuhkan banyak energi untuk membangkitkan panas yang dibutuhkan untuk uap panas. Bagaimanapun, produk Curing uap panas dapat digunakan setelah kira - kira 24 – 36 jam setelah produksi, yang mempunyai keunggulan dibandingkan Curing sistem lainnya. Pada dasarnya semua aturan dan regulasi untuk pembuatan beton secara benar diikuti, kekuatan beton dapat diperoleh seiring dengan waktu. Bagaimanapun, tingkat kenaikan kekuatan akan berkurang dengan waktu.

2.7 Pengujian Benda Uji

2.7.1 Daya Serap Air

Daya serap air ialah kemampuan benda untuk menyerap air dalam jangka waktu tertentu umumnya dilakukan perendaman selama 24 jam dalam suhu ruang.

Penyerapan Air =
$$\frac{\text{m j - mk}}{\text{mk}}$$
 x 100(2.7.1)

Daimana: mk = masaa sampel kering (gr)

Mj = massa sampel yang telah direndam di dalam air (gr)

2.7.2 Pengujian Densitas

Pengujian Porositas ialah pengujian yang di lakukan untuk mengetahui pori pori yang tedapat pada benda uji. Persentase porositas dapat diketahui berdasarkan daya serap bahan terhadap airyaitu dengan perbandingan volume air yang di serap dengan volume total sampel

Densitas =
$$\frac{m}{V}$$
(2.7.2)

Dimana:

m = Massa Benda uji

V = Volume benda uji

2.7.3 Uji Kuat Tekan

Pengujian kuat tekan Pada paving Block ini dilakukan pada usia 28 hari dengan mengunakan alat UTM

Dengan rumus Kuat tekan:

$$Fc' = F$$
 (2.7.3)

Dengan Fc' = kuat tekan paving Block (kg / cm2)

F = Beban maksimum (kg)

A = Luas Bidang tekan (cm2)

BAB III

METODOLOGI PENELITIAN

Metodologi penelitian merupakan Cara yang di gunakan di suatu penelitian sebagai tolak ukur dari hasil penelitian yang kita lakukan yang hasilnya nantinya menunjukan sebab akibat serta keterkaitan antara kegiatan yang satu dengan yang lainya,serta sebagai bentuk penyelesaian dari penggunaan metode kulitatif maupun kuantitatif.

Metode yang di gunakan ialah metode experimental. Tahapan Dalam penelitian Pengujian Material

Pengujian material adukan beton dilakukan di loabolatorium, Dinas Pengerjaan Umum Bina Marga Kota Medan

1. Persiapan Dan Pembuatan Benda Uji

Pembuatan Benda Uji berbentuk Kubus Dan Paving Block dilakukan Di Labolatorium Pekerjaan Umum Dinas Bina Marga Dan Bina Konstruksi Kota Medan. Dengan proses Penulis Menyediakan Sampel Paving Block yang akan di uji kuat tekannya Serta penyerapan airnya dari sampel benda uji yang telah disediakan Dengan variasi kandungan atau penambahan cangkang siput sebanyak 0 %, 20 %, 50 %

2. Teknik Pengumpulan Data

Dari Pengujian Kuat tekan penulis akan mendapatkan Data kuat tekanyang dihasilkan benda uji serta penyerapan air pada tiap sampelyang telah dibuat kemudian akan dicatat nantinya.

3. Analisa

Dari hasil angka kuat tekan yang di dapatkan penulis akan menganalisa dan membandingka sifat kuat tekan antara 0 %, dengan pergantian 20 % cangkang siput , serta 50 % pergantian Batu pecah dengan cangkang siput

3.1 Lokasi Penelitian

Penelitian ini dilakukan di Labolatorium Pengujian dan Pengendalian mutu Dinas Binamarga dan Bina konstruksi

Berlokasi di Jalan Sakti Lubis No.7 Medan

3.2 Bahan Baku Dan peralatan

3.2.1 Bahan Baku

Bahan baku pembuatan benda uji antara lain:

a Semen

Jenis semen yang di gunakan ialah semen Portland dengan merk holcim. Dengan kelebihan lambat dalam pengeringan semen yang cepet mengering akan mengakibatkan keretakan serta sulit melakukan perbaikan jika terlalu cepat mengering ketika suda di lakukan.

b. Pasir

Pasir yang secara umum terdapat di pasaran yang memiliki kwalitas yang baik dan sedikit memiliki kadar lempung yang baik di gunakan serta dengan kriteria butiran tertentu yang dapat mengikat baik dengan semen .

c. Air

Air yang di gunakan ialah air yang tersedia di lab itu sendiri yang merupakan air PDAM, yang dapat di gunakan untuk konsumsi sengga aman di gunakan untuk Acuan.

d.Batu pecah

Batu pecah dengan aturan lolos saringan pada ayakan saringan no 4 dan tertahan di saringan no 8

Batu spit yang digunakan ialah batu split yang tarsedia di laboratorium yang telah memiliki standar dan kriteria sendiri untuk pengujian Dinas Bina Marga sehingga sudah terstandar.

d. Pecahan Cangkang Siput yang lolos pada ayakan saringan no 4 dan tertahan di 8

Dengan jenis siput Bulan atau siput harimau jenis siput ini merupakan siput yang paling umum untuk di konsumsi dan lebih mudah di temukan serta ada di pasaran sehingga dapat di gunakan untuk bahan pengganti batu pecah.

3.2.2 Peralatan

a. Timbangan digital

Timbangan yang di gunakan dengan kketelitian yang baik baik timbangan digital maupun timbangan untuk berat tertentu.

b. Pan

Pan pang yang du gunakan dan yang tersedia dengan banyak ukuran dan variasi bentuk sesuai dengan kebutuhan .

c. Saringan

Saringan yang digunakan sesuai kebutuan untuk pasir dan ayakan cangkang siput

d. Sekop

Sekop yang di gunakan iyalah sendok pasir sederhana ayang akan di gunakan untuk mengaduk serta menimbang bahan - bahan

e. Palu karet

Yang di gunaka untuk memukul sisi- sisi cetakan yang telah di isi agar gelembung udara naik kepermukaan

f. Oven

Oven yang digunakan ialah oven yang umumnya banyak di sediakan di tempat laboratorium dinas pengerjaan bina marga

g. Gelas Ukur

Digunakan untuk menakar banyaknya air yang akan di gunakan untuk adukan bahan cetakan.

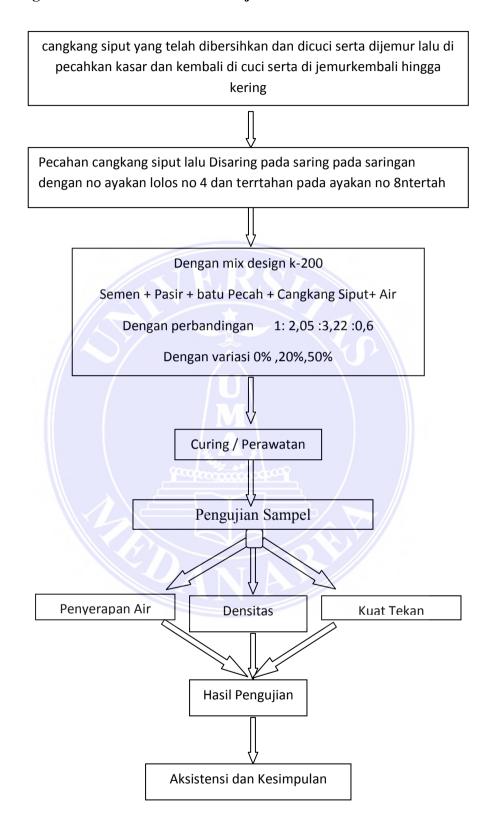
h. Cetakan Kubus

Cetakan Kubus digunakan Sebagai alat cetak benda uji dengan ukurang 15x15x15

i. Cetakan Paving block sebagai sempel bahan jadi 20 x 10 x 6

j. Rojokan / vibrator

Untuk memadatkan bahan pengisi cetakan arar tidak terjadinya rongga serta meratakan bahan di cetakan.


k. UTM (*Universal Testing Mechine*)

Mesin atau alat yang digunakan untuk mengetahui kuat tekan yang dihasilkan oleh beton dengan cetakan 15x15x15 tersebut.

1. Cetakan Vaping Block

Cetakan vaping block yang digunakan berukuran 21x10,5x6 sesuai umumnya yang ada di pasaran. Cetakan dibuat secara manual .

3.3 Diagram Alir Pembuatan Benda Uji

Gambar 3.3 rangkaian diagram alir

3.4 Tahap Pengujian Bahan

Pengujian pengujian yang dilakukan Pada bahan penyusun paving Block ialah 3.4.1 Semen

Semen merupakan bahan Pengikat , semen yang digunakan dalam penelitian ini ialah semen portland dengan merk holcim pemeriksaan dilakukan secara visual ,Semen harus dalam keadaan bubuk tidak menggumpal atau mengeras serta butiranya terasa halus .hal ini biasanya terjadi karena ketidak rapatanya dalam menutup karung semen yang teh terbuka atau di pakai sehingga mengurangi mutu semen jika ingin digunakan selanjutnya.

3.4.2 Pasir

Pasir yang digunakan haruslah bersih dari bahan organik dan atau pun lanau , dalam proses pengradasian sekaligus proses pelepasan dengan lanau deng saringan yang lolos pada nomor 10 serta tertahan pada ayakan no 200

3.4.3 Batu split / batu pecah

Batu yang digunakan ialah jenis batu pecah yang terdapat dan terstandar dari laboratorium itu sendiri dengan dilakukan pengayakan dan diambil atau di gunakan patu pecah yang tertahan pada ayakan no 4 atau medium

3.4.4 air

Air yang digunakan sebagai bahan campuran cetakan haruslah dilakukan pengujian minimal secara visual ,, umumya air yang layak minum dapat di gukan sebagai air pencampur. Secara visual bersih, tidak mengandung lumpur, minyak,garam dan sampah organik, air yang digunakan disini ialah yair PDAM

yangtersedia di labolatorium.

3.4.5 Cangkang Siput

Cangkaang siput yang digunakan iyalah cangkan siput yang umum terdapat di pasar pasar yaitu jenis siput bulan atau siput harimau, umumnya lebih mudah di dapatkan karena dapat dikonsumsi, cangkang yang digunakan haruslah di cuci bersih sehingga tidak memiliki sisa bahan organik didalamnya lalu di jemur beberapa hari hingga kering dan di cuci kembali untuk menghilangkan kemungkinan bahan organik atau sisa tubuh siput yang tertinggal yang dapat merusakbeton nantinya. Lalu di jemur kembali hingga kering.

3.5 Tahap Penyiapan Benda Uji

a. mix design cetakan kubus

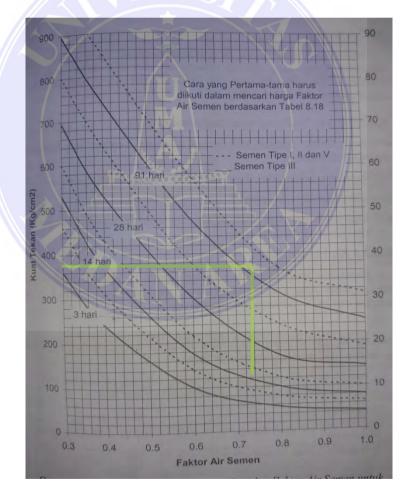
Menimbang semua bahan yang telah disediakan sebagai penyusun paving block ,air, pasir , semen , batu pecah serta cangkang siput serta menyiapkan bahan alat alat yang digunakan untuk mencetak campuran tersebut. Mulai dari pan penimbang , timbangan , pan pengaduk, rojokan.

3.6 Perencanaan Mix Design beton K-200

Data-data:

- a. Direncanakan dalam pembuatan paving block jalan Dengan benda Uji kubus.
- b Mutu beton K 200
- c Deviasi standart $S = 56 \text{ kg/cm}^2$

d Jenis semen yang dipakai adalah tipe 1


Menentukannilaitambah margin (m) Nilai tambah kuat tekan = $1.64 \times 56 = 91,84 \text{kg/cm}^2$ Kuat tekan rata-rata umur 28 hari = $200 + 91,84 = 291,84 \text{ kg/cm}^2$

Jenis agregat yang digunakan

AgregatKasar = BatuPecah

AgregatHalus = PasirAlami

- a. Dengan kuat tekan umur 28 hari= $291,84 \text{ kg/cm}^2$ dengan type semen Portland adalah type I
- b. Faktor air semen dari grafik kuat tekan = 0,71

Gambar 3.2 Grafik hubungan kuat tekan dan FAS

Maka di ambil faktor air semen yang lebi kecil sesuai tabel 3.1 Nilai FAS

berikut ini:

Tabel 3.1 Nilai FAS

	Jenis pembetonan	Jumlah	Nilai
		semen	faktor air
		minimum m ³	semen
		beton	maksimum
Beton di da	alam ruangan bangunan :		
a.	Keadaan keliling non-	275	0.60
	korosif		
b.	Keadaan keliling korosif,	325	0.52
	disebabkan oleh		
	kondensasi atau uap korosif		
Beton dilu	ar bangunan :		
a.	Tidak terlindung oleh hujan	325	0,6
	dan terik matahari langsung	275	
b.	Terlindung oleh hujan dan		0,6
teri	k matahari langsung		
Beton yang	g masuk ke dalam tanah :		
a.	Mengalami keadaan basah	325	0.55
	kering berganti-ganti		
b.	Mendapat pengaruh sifat	375	0.52
	dan alkali dari tanah		
Beton yan	g kontinu berhubungan	L / //	
dengan a	ir:		
a	Air tawar	275/	0.57
b	Air laut	375	0.52

1. Penetapan nilai slump sesuai dengan tabel slump

Untuk Nilai slump dapat dilihat padabeton dapat dilihat pada tabel 3.2 berikut:

Tabel 3.2 penetapan nilai slump

Pemakaian Beton	Slump (cm)	
	Maksimum	Minimum
Dinding, Pelat Pondasi dan Pondasi Telapak Bertulang	12,5	5,0
Pondasi Telapak tidak bertulang, kaison dan	9,0	2,5

struktur bawah tanah	•	
Pelat, Balok, Kolom dan Dinding	15,0	7,5
Perkerasan Jalan	7,5	5,0
Pembetonan masal	7,5	2,5

- a. Slump ditetapkan setinggi: 60 180 mm.
- b. Ukuran agregat maksimum ditetapkan 20 mm
- c Kadar air bebas

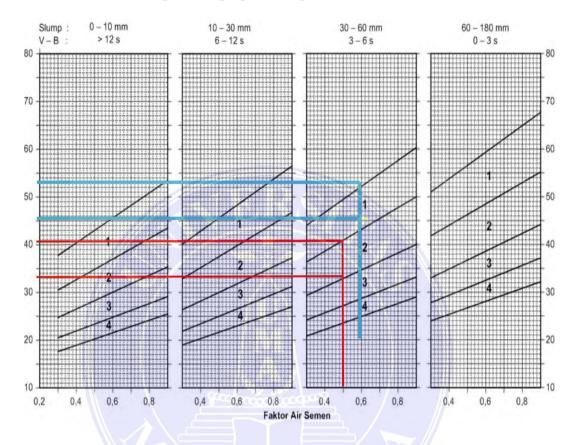
Untuk kebutuhan batu pecah mengacu pada data pada tabel 3.3 berikut:

Tabel 3.3 Perkiraan kebutuhan air per meter kubik beton

Ukuran maks. Agregat (mm)	Jenis batuan		Slu	mp	
		0-10	10-30	30-60	60-
					180
10	Alami	150	180	205	225
	Batu pecah	180	205	230	250
20	Alami	135	160	180	195
	Batu pecah	170	190	210	225
30	Alami	115	140	160	175
	Batu pecah	155	175	190	205

Sumber: SNI-T-15_1990-03-13

Untuk agregat gabungan yang berupa campuran antara pasir alami dan batu pecah, maka kadar air bebas harus diperhitungkan antara $195 - 225 \text{ kg/m}^3$, memakai rumus:


Kadar air bebas =
$$\frac{2}{3}$$
W_h+ $\frac{1}{3}$ W_k = $\frac{2}{3}$ 195+ $\frac{1}{3}$ 225 = 205 kg/m³

d. Menghitung Jumlah semen

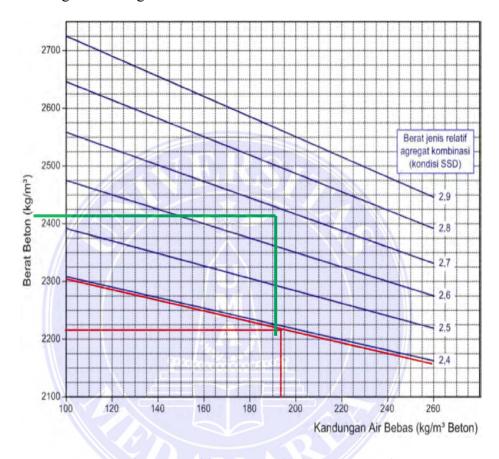
Kadar semen : $205 / 0.6 = 341,6 \text{ kg/m}^3$.

e. Berdasarkan ukuran maksimum agregat =20mm, slump = 60-180

Gambar 3.3 Uji Slump

Maka di peroleh Grafik persentase agregat halus = (38 + 48) / 2 = 43%

Persen agregat kasar =
$$100 \%$$
 -persen agregat halus = 100% - 43% = 57%


Bj Agregat Gabungan = % Ag halus x Bj relatif+ % Ag Kasar + Bj relatif

Kasar =
$$(43 \% \times 2700) + (57 \% \times 2600)$$

= $2,64$

f. Berat jenis beton : diperoleh dari grafik, dengan jalan membuat grafik linier baru

yang sesuai dengan nilai berat jenis agregat gabungan yaitu 2.64. titik potong grafik baru ini sesuai dengan garis tegak lurus yang menunjukkan kadar air bebas (dalam hal ini 205 kg/m³). Menunjukkan nilai berat jenis beton yang dirancang, diperoleh angka 2350 kg/m³.

Gambar 3.4 Perkiraan Berat jenis Beton Basah

Kadar agregat gabungan : = Bj Beton segar – kadar semen – kadar air bebas

$$= 2350 - 341,6 - 205$$

$$= 1803.4 \text{ kg} / \text{m}^3$$

Kadar agregat halus = % Ag. Halus x kadar agregat gabungan

$$= 39 \% \times 1803,4$$

$$=703,326$$

Kadar agregat kasar = % Ag. Kasar x kadar agregat gabungan

$$= 61\% \times 1803,4$$

= 1100

Maka dari hasil perhitungan didapat hail perbandingan sebagai berikut :

Semen	Ag, Halus	Ag Kasar	Air	
341,6	703,3	1100	205	

Proporsi dalam berat: 1 : 2,05 : 3,22 : 0,6

Perhitungan kebutuhan Bahan.

Vol. Kubus: sisi3

Vol. Kubus $15x15x15 = 3375cm^3$

$$= 3375 : 10^{-6} \text{ m}^3$$

$$=0,003375$$

Perhitungan kebutuhan Semen dalam 1 benda uji kubus:

$$\frac{1}{6.87} \times 0.003375 \times 3150 = 1547 \ gr$$

Perhitungan kebutuhan Agregat halus dalam 1 benda uji kubus :

$$\frac{2,05}{6,87} \times 0,003375 \times 1400 = 1409 \ gr$$

Perhitungan kebutuhan Agregat Kasar dalam 1 benda uji kubus:

$$\frac{3,22}{6,87} \times 0,003375 \times 1800 = 2847gr$$

Perhitungan Kebutuhan Air dalam 1 benda uji Kubu

$$\frac{0.6}{6.87} \times 3375 = 294 \ gr$$

$294 \ cm = 294 \ ml \ air$

Dari perhitungan didapatkan hasil perhitungan kebutuhan bahan untuk pembuatan benda uji sepertitabel 3.4 berikut:

Tabel 3.4: Kebutuhan bahan dalam satu benda uji

Variasi	Semen	Ag.	Ag.Kasar	Cangkang	Air
benda UJi		Halus		Siput	
Variasi 0%	1547 gr	1409 gr	2847 gr	_	294 ml
Variasi 20%	1547 gr	1409 gr	2277,6 gr	569,4 gr	294 ml
Variasi 50%	1547 gr	1409 gr	1423,5gr	1423,5 gr	294 ml

sumber: data penelitian

Mix design Cetakan Paving block

Perhitungan kebutuhan bahan cetakan Paving block

$$21 \times 10.5 \times 6 = 1323 \text{ cm}^3$$

= $1323 : 10^{-6} \text{ m}^3$
= 0.001323 m^3

Perhitungan kebutuhan Semen

$$\frac{1}{6,87} \times 0,001323 \times 3150 = 606 \, gr$$

Perhitungan kebutuhan Agregat Halus

$$\frac{2,05}{6,87} \times 0,001323 \times 1400 = 552 \ gr$$

Perhitungan kebutuhan Agregat Kasar

$$\frac{3,22}{6,87} \times 0,001323 \times 1800 = 1116 gr$$

Perhitungan kebutuhan Air

$$\frac{0.6}{6.87} \ x \ 1323 = 104 \ cm \ = 115 \ ml$$

Dari perhitungan didapatkan hasil perhitungan kebutuhan bahan untuk pembuatan benda uji Paving Block seperti pada tabel 3.4 berikut:

Tabel 3.5 Kebutuhan untuk cetakan paving

Variasi	Semen	Ag.	Ag.Kasar	Cangkang	Air
benda UJi		Halus		Siput	
Variasi 0%	606 gr	552 gr	1116 gr		115 ml
Variasi 20%	606 gr	552 gr	892,8 gr	223,2 gr	115 ml
Variasi 50%	606 gr	552 gr	558gr	558 gr	115 ml
		1 *		_	

sumber : data penelitian

BAB IV

PERHITUNGAN DAN PEMBAHASAN

Penelitian dilakukan bertempat di : Laboratorium Pengujian dan PengendalianMutu Dinas Bina marga Dan Bina konstruksi

Berlokasi di : Jalan Sakti Lubis No.7 Medan

4.1 Hasil Penelitian Benda Uji

Hasil pengujian dapat dilihat pada tabel 4.1 berikut :

Tabel 4.1 Berat Benda Uji

No	Variasi	Berat (gr)
	Campuran	
1	Normal	6126
2	Normal	6152
3	Normal	6036
4	Normal	5988
5	Normal	5975
6	Normal	6219
7	Normal	6081
8	Normal	6205
9	Normal	6029
10	Normal	6198
11	Normal	6113
12	Normal	6307
13	Normal	6233

14	Normal	6091
15	Normal	6138
16	Normal	6130
17	Normal	5991
18	Normal	6120
19	Normal	6094
20	Normal	6109
21	20 % C S	6092
22	20 % C S	6197
23	20 % C S	6056
24	20 % C S	5927
25	20 % C S	5983
26	20 % C S	6103
27	20 % C S	6017
28	20 % C S	6153
29	20 % C S	6144
30	20 % C S	6258
31	20 % C S	6222
32	20 % C S	5989
33	20 % C S	6033
34	20 % C S	6091
35	20 % C S	6027
36	20 % C S	6108
37	20 % C S	5963
38	20 % C S	5972
-		

60	50 % C S	5922	Perhitungan daya serap air
59	50 % C S	5906	4.1.2 Perhitungan Daya Serap Air
58	50 % C S	5997	
57	50 % C S	6083	Sumber : data penelitian
56	50 % C S	5831	
55	50 % C S	5853	
54	50 % C S	5974	
53	50 % C S	5901	
52	50 % C S	5977	
51	50 % C S	5892	
50	50 % C S	6109	
49	50 % C S	6008	
48	50 % C S	5922	
47	50 % C S	5910	
46	50 % C S	5944	
45	50 % C S	6017	
44	50 % C S	6194	
43	50 % C S	6083	
42	50 % C S	5889	
41	50 % C S	6122	
40	20 % C S	6129	
39	20 % C S	6010	

Berdasarkan pada persamaan2.7.1

pada halaman 32

$$= \frac{m_{b-} m_k}{m_k} x100\%$$

Massa Kering
$$(m_b) = 6126$$

Massa Basah
$$(m_k)$$
 = 6289

$$=\frac{6289_{-}6126}{6126} \text{ x} 100\%$$

= 2,66 %

Dari pengujian yang dilakukan didapathasil pada tabel 4.2 Berikut:

Tabel 4.2 Pemeriksaan Penyerapan Air

No	Variasi	Massa	Massa	Penyerapan	Penyerapan	SNI 03 -
	Campuran	berat	Berat	air	Air rata	-0349-
		(gr)	Basah (gr)		Rata (%)	1989
1	Normal	6126	6289	2,66		
2	Normal	6152	6293	2,29		
3	Normal	6036	6203	2,76		
4	Normal	5988	6157	2,79		
5	Normal	5975	6201	3,78		
6	Normal	6219	6343	1,99		
7	Normal	6081	6185	1,71		
8	Normal	6205	6336	2,11		
9	Normal	6029	6157	2,12		
10	Normal	6198	6301	1,66		
11	Normal	6113	6284	2,79		
12	Normal	6307	6508	3,18		

13	Normal	6233	6402	2,71		Penyerapan
14	Normal	6091	6266	2,87	2,71	maksimum
15	Normal	6138	6223	1,38	_	6 %
16	Normal	6130	6287	2,56	_	
17	Normal	5991	6260	4,49	_	
18	Normal	6120	6335	3,51	_	
19	Normal	6094	6333	3,92	_	
20	Normal	6109	6298	3,09		


Campuran	berat (gr)	Berat	air	Air rata	0240
	(gr)			All Tata	-0349-
	(8-)	Basah (gr)		Rata (%)	1989
20 % C	6092	6211	3,22		
20 % C S	6197	6328	2,11		
20 % C S	6056	6253	3,25		
20 % C S	5927	6246	5,38		D
20 % C S	5983	6295	5,21		Penyerapan
20 % C S	6103	6280	2,90	3,42	Air
20 % C S	6017	6204	3,10		maksimum
20 % C S	6153	6278	2,03		6 %
20 % C S	6144	6255	1,80		
20 % C S	6258	6401	2,28		
20 % C S	6222	6392	2,73		
20 % C S	5989	6308	5,32		
	20 % C S 20 % C S	20 % C S 6056 20 % C S 5927 20 % C S 5983 20 % C S 6103 20 % C S 6017 20 % C S 6153 20 % C S 6144 20 % C S 6258 20 % C S 6222	20 % C S 6056 6253 20 % C S 5927 6246 20 % C S 5983 6295 20 % C S 6103 6280 20 % C S 6017 6204 20 % C S 6153 6278 20 % C S 6144 6255 20 % C S 6258 6401 20 % C S 6222 6392	20 % C S 6197 6328 2,11 20 % C S 6056 6253 3,25 20 % C S 5927 6246 5,38 20 % C S 5983 6295 5,21 20 % C S 6103 6280 2,90 20 % C S 6017 6204 3,10 20 % C S 6153 6278 2,03 20 % C S 6144 6255 1,80 20 % C S 6258 6401 2,28 20 % C S 6222 6392 2,73	20 % C S 6197 6328 2,11 20 % C S 6056 6253 3,25 20 % C S 5927 6246 5,38 20 % C S 5983 6295 5,21 20 % C S 6103 6280 2,90 20 % C S 6017 6204 3,10 20 % C S 6153 6278 2,03 20 % C S 6144 6255 1,80 20 % C S 6258 6401 2,28 20 % C S 6222 6392 2,73

33	20 % C S	6033	6266	3,86
34	20 % C S	6091	6233	2,33
35	20 % C S	6027	6198	2,83
36	20 % C S	5844	6108	4,51
37	20 % C S	5963	6277	5,26
38	20 % C S	5972	6194	3,71
39	20 % C S	6010	6240	3,83
40	20 % C S	6129	6302	2,82

No	Variasi	Massa	Massa	Penyerapan	Penyerapan	SNI 03 -
	Campuran	berat	Berat	air	Air rata	-0349-
		(gr)	Basah (gr)		Rata (%)	1989
41	50 % C S	6122	6287	2,69		
42	50 % C S	5889	6272	6,50		
43	50 % C S	6083	6220	2,25		
44	50 % C S	6194	6378	2,97		
45	50 % C S	6017	6169	2,52		
46	50 % C S	5944	6294	5,88		
47	50 % C S	5910	6243	5,63		Penyerapan
48	50 % C S	5922	6222	5,06	4,48	Air
49	50 % C S	6008	6254	4,09		maksimum
50	50 % C S	6109	6277	2,75		10 %
51	50 % C S	5892	6206	5,32		10 /0
52	50 % C S	5977	6259	4,71		
53	50 % C S	5901	6268	6,21		

54	50 % C S	5974	6294	5,35
55	50 % C S	5853	6191	5,77
56	50 % C S	5831	6033	3,46
57	50 % C S	5983	6214	3,86
58	50 % C S	5997	6208	3,57
59	50 % C S	5906	6207	5,06
60	50 % C S	5922	6277	5,99

sumber : data penelitian

Gambar 4.1 Grafik Penyerapan Air

4.1.3 Pengukuran Densitas

Berikut adalah hasil pengukuran Densitas dengan benda uji Normal, substitusi cangkang siput 20 %, serta subtitusi cangkang sipu 50%.

Maka densitas (ρ)

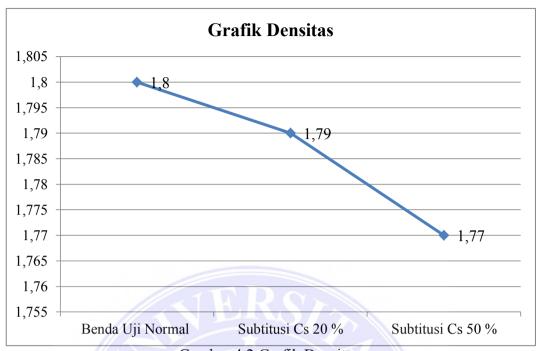
Massa benda uji (m) = 6126

Volume kubus = $15 \times 15 \times 15$

$$= \frac{M}{v}$$

$$= \frac{6126}{3375}$$

$$= 1,81 \text{ gr/cm}$$


Tabel 4.3 Pemeriksaan Densitas

No	Variasi Berat Volume De		Densitas	Densitas		
	Campuran	(gr)	(cm³)	(gr/cm³)	Rata – rata	
				(%)	(%)	
1	Normal	6126	3375	1,81		
2	Normal	6152	3375	1,82		
3	Normal	6036	3375	1,78	<u> </u>	
4	Normal	5988	3375	1,77	_	
5	Normal	5975	3375	1,77	_	
6	Normal	6219	3375	1,84	†	
7	Normal	6081	3375	1,80	_ //	
8	Normal	6205	3375	1,83	\ \	
9	Normal	6029	3375	1,78		
10	Normal	6198	3375	1,83		
11	Normal	6113	3375	1,81		
12	Normal	6307	3375	1,86	<u>—</u>	
13	Normal	6233	3375	1,84	<u> </u>	
14	Normal	6091	3375	1,80		
15	Normal	6138	3375	1,81	1,80	
16	Normal	6130	3375	1,81		
17	Normal	5991	3375	1,77		

18	Normal	6120	3375	1,81
19	Normal	6094	3375	1,80
20	Normal	6109	3375	1,81

No	Variasi	Berat	Volume	Densitas	Densitas
	Campuran	(gr)	(cm³)	(gr/cm³)	Rata – rata
				(%)	(%)
21	20 % C S	6092	3375	1,80	
22	20 % C S	6197	3375	1,83	
23	20 % C S	6056	3375	1,79	
24	20 % C S	5927	3375	1,75	
25	20 % C S	5983	3375	1,77	
26	20 % C S	6103	3375	1,80	
27	20 % C S	6017	3375	1,78	-
28	20 % C S	6153	3375	1,82	_
29	20 % C S	6144	3375	1,82	
30	20 % C S	6258	3375	1,85	1,79
31	20 % C S	6222	3375	1,84	<u>V</u> ,,,,,,,
32	20 % C S	5989	3375	1,77	
33	20 % C S	6033	3375	1,78	
34	20 % C S	6091	3375	1,80	
35	20 % C S	6027	3375	1,78	
36	20 % C S	6108	3375	1,80	
37	20 % C S	5963	3375	1,76	
38	20 % C S	5972	3375	1,76	
39	20 % C S	6010	3375	1,78	
40	20 % C S	6129	3375	1,81	

No	Variasi	Berat	Volume	Densitas	Densitas
	Campuran	(gr)	(cm³)	(gr/cm³)	Rata – rata
				(%)	(%)
41	50 % C S	6122	3375	1,81	
42	50 % C S	5889	3375	1,74	
43	50 % C S	6083	3375	1,90	
44	50 % C S	6194	3375	1,83	
45	50 % C S	6017	3375	1,78	
46	50 % C S	5944	3375	1,76	_
47	50 % C S	5910	3375	1,75	
48	50 % C S	5922	3375	1,75	
49	50 % C S	6008	3375	1,78	
50	50 % C S	6109	3375	1,81	
51	50 % C S	5892	3375	1,74	1,77
52	50 % C S	5977	3375	1,77	+ //
53	50 % C S	5901	3375	1,74	
54	50 % C S	5974	3375	1,77	` //
55	50 % C S	5853	3375	1,73	<u>//</u> /
56	50 % C S	5831	3375	1,72	
57	50 % C S	6083	3375	1,80	
58	50 % C S	5997	3375	1,77	
59	50 % C S	5906	3375	1,74	
60	50 % C S	5922	3375	1,75	<u></u>

Gambar 4.2 Grafik Densitas

4.1.4 Pengujian Kuat Tekan

Pengujian kuat tekan ini ditujukan untuk mengetahui hasil ketahan benda uji yang telah di berikan beban untuk mengetahui hasil kuat teka pada benda uji dengan campuran semen ,pasir , air batu pecah atau cangkang siput selam 28 hari.

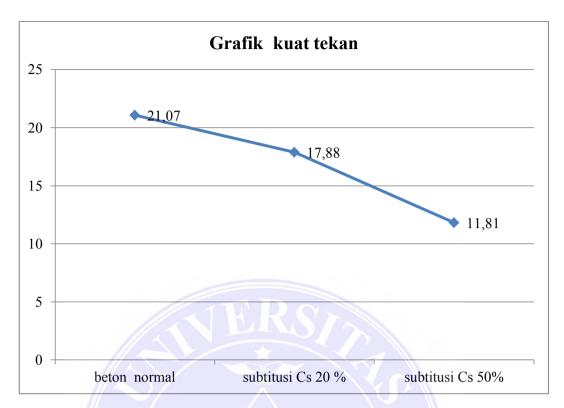
Beban Maksimum (P) =
$$4680 \text{ kg. F}$$

= $4680 \text{ x } 9.8 \text{ m/s}^2$
= 45864 N
Luas Permukaan Kubus = $5 \text{ sisi} \times 5 \text{ sisi}$
= 15×15
= 225

Maka Kuat tekan (f c)
$$= \frac{P}{A}$$

$$= \frac{45864}{225}$$

$$= 20,38 \text{ Mpa}$$


Tabel 4.4 Tabel kuat tekan

No	Variasi	Beban	Luas	Kuat	Kuat te
	Campuran	Maksimum	Bidang	tekan	rata –rata
				(Mpa)	(Mpa)
1	Normal	45864	225	20,38	
2	Normal	48118	225	21,38	
3	Normal	48020	225	21,34	<u> </u>
4	Normal	47990	225	21,32	
5	Normal	46677	225	20,74	7
6	Normal	47049	225	20,91	- //
7	Normal	48020	225	21,34	V//
8	Normal	47148	225	20,97	-
9	Normal	45570	225	20,25	
10	Normal	47216	225	20,98	_
11	Normal	46638	225	20,72	_
12	Normal	48666	225	21,62	21.07
13	Normal	47814	225	21,25	_ 21,07
14	Normal	47245	225	20,.99	_
15	Normal	48784	225	21,68	_
16	Normal	48931	225	21,70	_
17	Normal	50401	225	21,40	_

18	Normal	46942	225	20,86	
19	Normal	47822	225	20,28	_
20	Normal	47961	225	21,31	<u> </u>

No	Variasi	Beban	Luas	Kuat	Kuat tekan
	Campuran	Maksimum	Bidang	tekan	rata –rata
				(Mpa)	(Mpa)
21	20 % C S	40229	225	17,87	
22	20 % C S	40278	225	17,90	
23	20 % C S	40297	225	17,91	
24	20 % C S	39543	225	17,57	
25	20 % C S	39268	225	17,45	
26	20 % C S	41140	225	18,28	
27	20 % C S	39680	225	17,63	
28	20 % C S	40287	225	17,90	
29	20 % C S	40131	225	17,83	
30	20 % C S	39523	225	17,56	17,88
31	20 % C S	40973	225	18,21	17,00
32	20 % C S	40268	225	17,89	
33	20 % C S	41189	225	18,30	
34	20 % C S	40140	225	17,84	•
35	20 % C S	40209	225	17,87	•
36	20 % C S	41238	225	18,32	
37	20 % C S	40033	225	17,79	-
38	20 % C S	41287	225	18,34	-
39	20 % C S	41258	225	17,30	-
40	20 % C S	40552	225	18,02	

No	Variasi	Beban	Luas	Kuat	Kuat tekan
	Campuran	Maksimum	Bidang	tekan	rata –rata
				(Mpa)	(Mpa)
41	50 % C S	25578	225	11,36	
42	50 % C S	22578	225	11,16	
43	50 % C S	27293	225	12,13	
44	50 % C S	28204	225	12,53	
45	50 % C S	29174	225	12,96	
46	50 % C S	25568	225	11,36	
47	50 % C S	26489	225	11,77	
48	50 % C S	26342	225	11,70	
49	50 % C S	24313	225	10,80	11 01
50	50 % C S	25989	225	11,55	11,81
51	50 % C S	25774	225	11,45	
52	50 % C S	28469	225	12,65	
53	50 % C S	27841	225	12,34	
54	50 % C S	28743	225	12,77	
55	50 % C S	28204	225	12,53	
56	50 % C S	25186	225	11,19	
57	50 % C S	25538	225	11,35	
58	50 % C S	27057	225	12,02	
59	50 % C S	25793	225	11,46	
60	50 % C S	25460	225	11,31	

Gambar 4.3 Grafik Kuat Tekan

4.2 Hasil Pengujian Benda Uji paving Block

4.2.1 Perhitungan Berat benda Uji

Tabel 4.5 Berat benda Uji Paving block

No	Variasi Campuran	Berat
1	Normal	2463
2	Normal	2506
3	Normal	2447
4	20 %	2331
5	20%	2365

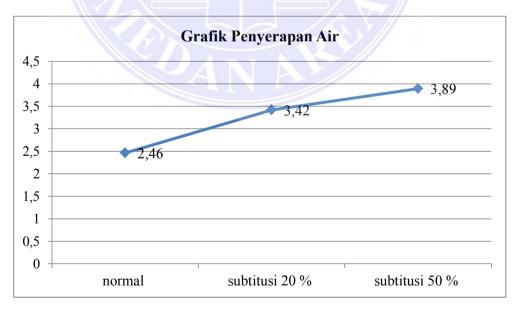
6	20%	2309
7	50%	2203
8	50%	2217
9	50%	2292

4.2.2Perhitungan Daya Serap Air

Perhitungan daya serap air Berdasarkan pada persamaan2.7.1

$$= \frac{m_b - m_k}{m_k} \times 100$$
Massa Kering $(m_b) = 2463$

$$= \frac{2515 - 2463}{2463} \times 100 \%$$


Massa Basah $(m_k) = 2515$

Tabel 4.6 Pemeriksaan Penyerapan Air

No	Variasi	Massa	Massa	Penyerapan	Penyerapan	SNI 03 –
	Campuran	berat	Berat	air	Air rata	-0349-
		(gr)	Basah (gr)		Rata (%)	1989
1	Normal	2463	2515	2,11		
2	Normal	2506	2574	2,71	2,46	maksimum
3	Normal	2447	2510	2,57		6

No	Variasi	Massa	Massa	Penyerapan	Penyerapan	SNI 03 –
	Campuran	berat	Berat	air	Air rata	-0349-
		(gr)	Basah (gr)		Rata (%)	1989
4	20 %	2331	2408	3,30		
5	20 %	2365	2446	3,42	3,42 %	maksimum
6	20 %	2309	2391	3,55		6

Variasi	Massa	Massa	Penyerapan	Penyerapan	SNI 03 –
Campuran	berat	Berat	air	Air rata	-0349-
	(gr)	Basah (gr)		Rata (%)	1989
50 %	2203	2297	4,26)	
50 %	2217	2311	4,23	3,89	maksimum
50 %	2292	2365	3,18		6%
	Campuran 50 % 50 %	Campuran berat (gr) 50 % 2203 50 % 2217	Campuran berat Berat (gr) Basah (gr) 50 % 2203 2297 50 % 2217 2311	Campuran berat (gr) Berat (gr) 50 % 2203 2297 4,26 50 % 2217 2311 4,23	Campuran berat (gr) Basah (gr) Air rata Rata (%) 50 % 2203 2297 4,26 50 % 2217 2311 4,23 3,89

Gambar 4.4 Grafik Penyerapan Air

4.2.3 Pengukuran Densitas

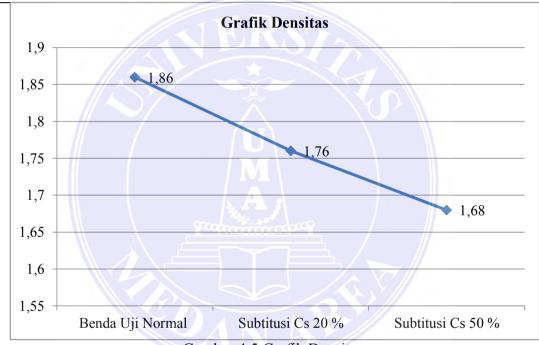
Berikut adalah hasil pengukuran Densitas dengan benda uji Normal, substitusi cangkang siput 20 %, serta subtitusi cangkang sipu 50%.

Maka densitas (ρ)

Volume kubus =
$$21x 10.5 \times 6$$

$$= \frac{M}{v}$$

$$= \frac{2463}{1323}$$


$$= 1,83 \text{ gr/cm}$$

Tabel 4.7 Pengukuran Densitas Paving Block

No	Variasi	Berat (gr)	Volume	Densitas	Densitas
	Campuran		(cm³)	(gr/cm³)	Rata – rata
				(%)	(%)
1	Normal	2463	1323	1,86	
2	Normal	2506	1323	1,89	1,86
3	Normal	2447	1323	1,84	

No	Variasi	Berat	Volume	Densitas	Densitas
	Campuran	(gr)	(cm³)	(gr/cm³)	Rata – rata
				(%)	(%)
4	20 %	2331	1323	1,76	
5	20 %	2365	1323	1,78	1,76
6	20 %	2309	1323	1,74	

No	Variasi	Berat	Volume	Densitas	Densitas
	Campuran	npuran (gr) (cm³)	(cm³)	(gr/cm³)	Rata – rata (%)
				(%)	
7	50 %	2203	1323	1,66	
8	50 %	2217	1323	1,67	1,68
9	50 %	2292	1323	1,73	

Gambar 4.5 Grafik Densitas

4.2.4 Pengujian Kuat Tekan

Pengujian kuat tekan ini ditujukan untuk mengetahui hasil ketahan benda uji yang telah di berikan beban untuk mengetahui hasil kuat teka pada benda uji dengan campuran semen ,pasir , air batu pecah atau cangkang siput selam 28 hari.

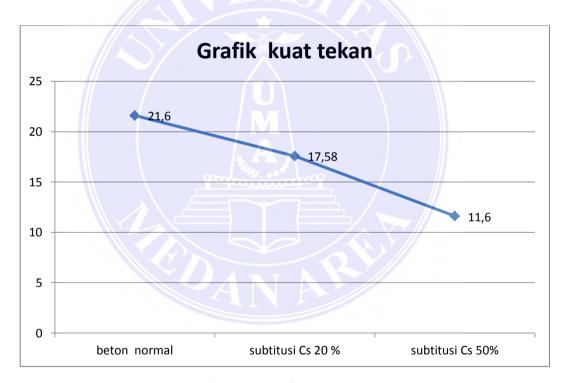
Beban Maksimum (P) =
$$4820 \text{ kg. F}$$

= $4820 \text{ x } 9.8 \text{ m/s}^2$

Luas Permukaan Paving Blok= P X L

$$= 21 \times 10,5$$

Maka Kuat tekan (f c)
$$= \frac{P}{A}$$


$$=\frac{47236}{220.5}$$

Tabel 4.8 Tabel kuat tekan

No	Variasi	Beban	Luas	Kuat	Kuat te
	Campuran	Maksimum	Bidang	tekan	rata –rata
				(Mpa)	(Mpa)
1	Normal	47236	220,5	21,42	9//
2	Normal	48510	220,5	22,00	21,60
3	Normal	40915	220,5	21,40	

No	Variasi	Beban	Luas	Kuat	Kuat te
	Campuran	Maksimun	n Bidang	tekan	rata –rata
				(Mpa)	(Mpa)
4	20 %	40248	220,5	17,72	
5	20 %	39121	220,5	17,74	17,58
6	20 %	34231	220,5	17,30	

No	Variasi	Beban	Luas	Kuat	Kuat te
	Campuran	Maksimum	Bidang	tekan	rata–rata
				(Mpa)	(Mpa)
7	50 %	25587	220,5	11,60	
8	50 %	25590	220,5	11,60	11,60
9	50 %	25636	220,5	11,62	

Gambar 4.8 Grafik Kuat Tekan

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Dari uji kuat tekan yang dilakukan terhadap benda uji kubus di dapat hasil 21,07 Mpa untuk benda uji 0 % atau normal dengan dengan daya serap air rata –rata 2,71%,untukserta densitas yang dihaslkan 1,8 , Untuk benda uji dengan penambahan pecahan cangkang siput sebesar 20% di dapati uji keat tekan 17,88 Mpadan penyerapan airnya 3,42 serta densitas yang dihasilkan sebesar 1,77% untuk kuat tekan yang dihasilkan 50%pengantian agregat kasar dengan cangkang siputialah 11,81 denan nilai serap ainya 4,88% dan densitas yang dihasilkan 1,79%

Batu pecah yang digunakan dengan standar lolos pada saringan no 4 dan tertahan pada saringan no 8 memang menghasilkan nilai kuat tekan sesuai rencana walaupun, hasil dengan penggujian subtitusi 20 % cangkan siput memang tidak memperbesar hasil kuat tekan yang di dapat akan tetapi jika merujuk kepada peraturan SNI 03 – 0691-1996 hasil uji termasuk kedalam mutu B dengan standar minimal 17,0 Mpa Dan rata rata 20 Mpa sehingga dapat di gunakan untuk pelataran parkir dan kuat tekan yang dihasilkan dengan penambahan cangkan siput sebesar 50% termasuk kedalam mutu D artinya masih dapat digunakan untuk area pertamanan dan juga masih dapat memenuhi persyaratan SNI 03-0691-1996 tentang penyerapan air maksimum sebesar 10 %. dengan hasil yang didapat sebesar 4,48 %

5.2 Saran

Adapun Saran yang dapat disampaikan Untuk Penelitian ini dan pengembangan penelitian selanjutnya ialah, Dalam pembuatan Mix Design perlunya percampuran yang merata antara semua bahan sehingga campuran lebih homogen sehingga lebih berpengaruh terhadap benda uji serta Perlunya dilakukan penelitian lebih lanjut terhadap penggunaan Cangkang siput , Baik sebagai pengganti semen , pasir , maupun Agregat kasar, sehingga penelitian selanjutnya dapat memberikan pengetahuan tentang takaran ataupun perbandingan , serta komposisi yang ideal sehingga didapatkan kuat tekan yang optimum atau yang direncanakan, juga Perlunya percobaan limbah cangkang siput jenis lain maupun dengan limbah lainnya sehingga dapat di pergunakan untuk penelitian sehingga menemukan sesuatu bahan tambah yang baru, termanfaatkan seperti limbah.

DAFTAR PUSTAKA

- Andre 2012 : Studi Sifat mekanik Paving Block Terbuat Dari Campuran Limbah Adukan Beton dan serbuk Kerang, (skripsi)Universitas Indonesia
 - https://media.neliti.com/media/publications/17798-ID-kulit-kerang-sebagai-bahan-substitusi-agregat-kasar-untuk-paving-block-sesuai-si.pdf
- Anis Rakhmawati, Muhammad Amin. 2010 : Kulit kerang Sebagai Bahan Subtitusi Agregat Kasar Untuk Paving Block, (Jurnal) Fakultas Teknik Universitas Tidar Magelang
- Asiacon Cipta Prima.2016,ukuran dan tipe paving block. Di akses tanggal 1 mei 2017
- Erwin Wijaya, 2012 Skripsi Program Studi teknik Lingkungan Fakultas Teknik Sipil Dan Perencanaan Universitas Pembangunan Nasional "Veteran "Jatim
 - http://eprints.upnjatim.ac.id/4383/1/file1.pdf
- Nurwahyu Hidayati.2010.Batako: Pengeruh Penambahan Abu Ampas Tebu Terhadap Sifat Fisis dan Mekanisme Batako. Departemen Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sumatra Utara, Medan
 - http://digilib.unila.ac.id/21800/20/SKRIPSI%20TANPA%20BAB%20PE MBAHASAN.pdf
- Sherliana, 2016 Studi Kuat Tekan Paving Block Dengan Campuran Tanah Semen Dan Abu Sekam Padi Menggunakan Alat pemadat Modifikasi. (skripsi Universitas Lampung
 - http://digilib.unila.ac.id/21800/20/SKRIPSI%20TANPA%20BAB%20PE MBAHASAN.pdf
- SNI 03; 2493-1991 peraturan sni tentang benda ujiSNI 03-2493-1991.pdf
 - https://catatanantilupa.wordpress.com/2013/09/17/berat-jenis-batu-alam-dan-bahan-bangunan-untuk-perhitungan-ongkos-angkut-per-kg-atau-m3/
- SK SNI 03-0691-1996 : Bata Beton (Paving Block) DIakses 1 mei 2017 Pada pukul 10:15 https://www.scribd.com/doc/191906913/SNI-03-0691-1996
- SNI Standar Nasional Indonesia: SNI 03-0691-1996 Di akses 1 mei 2017 pada puul 10:00 http://eprints.polsri.ac.id/243/8/Lampiran2.pdf
- Tri Mulyono, Yogyakarta, Teknologi Beton 2004 penerbit PENERBIT ANDI

LAMPIRAN

Gambar 1 siput Bulan

Gambar 2 Cangkang siput

Gambar 3 cangkang siput

Gambar 4 Timbangan

5.Batu pecah

6. Penimbangan Benda Uji

Gambar 8 Cetakan Kubus

Gambar 9 mencetak Benda Uji

Gambar 10 Penimbangan benda uji

Gambar 11 Proses Curring

Gambar 12 Prose Perendaman

Gambar 13 Proses Pengeringan

Gambar 14 Proses Uji Kuat tekan

Gambar 15 Hasil Uji Kuat Tekan

Gambar 16 Penimbangan Berat Kering Basah

Gambar 17 Penimbangan Berat

Gambar 18 Cetakan Paving

Gambar 19 Paving block

Gambar 20 Paving Block

Gambar 21 Uji kuat tekan

Gambar 22 Paving Block yang di uji