PENGARUH REWARD DAN SOCIAL SUPPORT GURU TERHADAP RESILIENSI BELAJAR SISWA KELAS XI DI SMA NEGERI 1 KABUPATEN ASAHAN

TESIS

OLEH

CYNTHIA FITRI KAUTSAR NPM. 201804015

PROGRAM MAGISTER PSIKOLOGI PASCASARJANA UNIVERSITAS MEDAN AREA MEDAN 2024

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

PENGARUH REWARD DAN SOCIAL SUPPORT GURU TERHADAP RESILIENSI BELAJAR SISWA KELAS XI DI SMA NEGERI 1 KABUPATEN ASAHAN

TESIS

Sebagai salah satu syarat untuk memperoleh gelar Magister Psikologi pada Pascasarjana Universitas Medan Area

OLEH

CYNTHIA FITRI KAUTSAR NPM. 201804015

PROGRAM MAGISTER PSIKOLOGI PASCASARJANA UNIVERSITAS MEDAN AREA MEDAN 2024

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

UNIVERSITAS MEDAN AREA MAGISTER PSIKOLOGI

HALAMAN PERSETUJUAN

Judul : Pengaruh Reward dan Social Support Guru Terhadap

Resiliensi Belajar Siswa Kelas XI di SMA Negeri 1 Kabupaten

Asahan

Nama: Cynthia Fitri Kautsar

NPM : 201804015

Menyetujui

Pembimbing I

Pembimbing II

Prof. Dr. Asih Menanti, S.Psi, MS

Dr. Nadra Ideyani Vita, M.Si

Ketua Program Studi Magister Psikologi

TOISTER PSI COLOR

Direktur

Hardjo, S.Psi., MA., Psikolog Prof. Dr. Ir. Retna Astuti Kuswardani., MS

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

^{2.} Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah

^{3.} Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

Telah diuji pada Tanggal 22 Desember 2023

Nama: Cynthia Fitri Kautsar

NPM : 201804015

Panitia Penguji Tesis:

Ketua : Prof. Dr. Nur'aini., S.Psi., MS

Sekretaris : Dr. Ummu Khuzaimah., M.Psi., Psikolog

Penguji I : Prof. Dr. Asih Menanti, S.Psi, MS

Penguji II : Dr. Nadra Ideyani Vita, M.Si

Penguji Tamu : Dr. Amanah Surbakti., M.Psi

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

 $^{2.\} Pengutipan\ hanya\ untuk\ keperluan\ pendidikan,\ penelitian\ dan\ penulisan\ karya\ ilmiah$

PERNYATAAN

Dengan ini saya menyatakan bahwa dalam tesis ini tidak terdapat karya yang pernah diajukan untuk memperoleh gelar kesarjanaan di suatu Perguruan Tinggi dan sepanjang pengetahuan saya juga tidak terdapat karya atau pendapat yang pernah ditulis atau diterbitkan oleh orang lain, kecuali yang secara tertulis diacu dalam naskah ini dan disebutkan dalam daftar pustaka.

Medan, 22 Desember 2023

Yang menyatakan,

Cynthia Fitri Kautsar

HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI TUGAS AKHIR/SKRIPSI/TESIS UNTUK KEPENTINGAN AKADEMIS

Sebagai sivitas akademik Universitas Medan Area, saya yang bertanda tangan di bawah ini :

Nama : Cynthia Fitri Kautsar

NPM : 201804015

Program Studi : Magister Psikologi

Fakultas : Pascasarjana

Jenis karya : Tesis

demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Universitas Medan Area Hak Bebas Royalti Noneksklusif (Non-exclusive Royalty-Free Right) atas karya ilmiah saya yang berjudul:

PENGARUH REWARD DAN SOCIAL SUPPORT GURU TERHADAP RESILIENSI BELAJAR SISWA KELAS XI DI SMA NEGERI 1 KABUPATEN ASAHAN

beserta perangkat yang ada (jika diperlukan). Dengan Hak Bebas Royalti Noneksklusif ini Universitas Medan Area berhak menyimpan, mengalihmedia/format-kan, mengelola dalam bentuk pangkalan data (database), merawat, dan mempublikasikan tugas akhir/skripsi/tesis saya.

Demikian pernyataan ini saya buat dengan sebenarnya.

Dibuat di Medan

Pada tanggal: 22 Desember 2023

Yang menyatakan

Cynthia Fitri Kautsar

RIWAYAT HIDUP

Cynthia Fitri Kautsar yang akrab di panggil Ade lahir di Medan pada tanggal 06 Februari 1998. Penulis merupakananak pertama dari Bapak Abdi Nusantara dan Ibu Dahlia. Telah menempuh pendidikan di SDN 132413 Kota Tanjungbalai dari tahun 2003 hingga tahun 2009. Melanjutkan pendidikan di SMP Negeri 1 Kota Tanjungbalai pada tahun 2009-2012. Setelah itu melanjutkan pendidika ke jenjang Sekolah Menengah Atas di SMA Negeri 2 Kota Tanjungbalai tahun 2012-2015.

Penulis kembali melanjutkan pendidikan untuk Strata 1 jurusan Pendidikan Islam Anak Usia Dini di Universitas Islam Negeri Sumatera Utara pada tahun 2015 hingga tahun 2019. Setelah tamat penulis melakukan kegiatan mengajar di beberapa lembaga Pendidikan Anak Usia Dini diantaranya di TK IT Nurul Ilmi Kota Medan dan RA Al-Ghiffari Kota Tanjungbalai Provinsi Sumatera Utara. Tidak sampai disitu perjuangan penulis dalam menimba ilmu. Penulis melanjutkan pendidikan di tahun 2020 ke jenjang Strata 2 di Universitas Medan Area jurusan Magister Psikologi Pendidikan.

Selama perkuliahan penulis mengikuti berbagai pelatihan, pada tahun 2021 mengikuti pelatihan Induksi Guru Pemula dan pada tahun 2022 penulis diterima mengikuti pelatihan PPG Prajabatan untuk Guru. Di akhir tahun 2023 penulis lulus menjadi ASN PPPK Guru di Toba.

ABSTRAK

PENGARUH REWARD DAN SOCIAL SUPPORT GURU TERHADAP RESILIENSI BELAJAR SISWA KELAS XI DI SMA NEGERI 1 KABUPATEN ASAHAN

CYNTHIA FITRI KAUTSAR NPM. 201804015

Resiliensi mengacu pada upaya mengatasi hambatan yang membuat peserta didik stres, hal tersebut dapat menghambat kemampuannya untuk belajar. Resiliensi memungkinkan peserta didik untuk beradaptasi dengan masalah sehingga berhasil menyelesaikan setiap persyaratan akademik. Untuk membangun keberhasilan pembelajaran pendidik harus membentuk resiliensi belajar peseta didik. Penelitian ini bertujuan untuk menganalisis pengaruh reward dan social support terhadap resiliensi belajar siswa. Metode penelitian yang digunakan adalah metode penelitian kuantitatif dengan desain ex post facto corelation study. Penelitian dilakukan di SMA Negeri 1 Kisaran Kabupaten Asahan. Jumlah populasi sebanyak 252 siswa dan jumlah sampel sebanyak 155 siswa. Teknik pengambilan sampel yang digunakan adalah teknik proportional random sampling. Penelitian ini menggunakan alat ukur skala reward guru, skala social support guru dan resiliensi belajar siswa. Hasil penelitian menunjukkan pengaruh positif dan signifikan reward terhadap resiliensi belajar dengan koefisien korelasi ry₁, r_{hitung} (0,457) > r_{tabel} (0,361) dengan t_{hitung} $(6,353) > t_{tabel}$ (1,960). Kemudian terdapat pengaruh positif signifikan social support terhadap resiliensi belajar dengan koefisien korelasi ry₂, r_{hitung} $(0,562) > r_{tabel} (0,361)$ dengan $t_{hitung} (8,408) > t_{tabel} (1,960)$. Secara simultan terdapat pengaruh positif signifikan reward dan social support terhadap resiliensi belajar dengan koefisien korelasi ry_{12} , r_{hitung} (0,666) > r_{tabel} (0,361) sebesar 44,3 % dan signifikan uji $F_{\text{hitung}}(60,568) > F_{\text{tabel}}(3,90).$

Kata Kunci: Reward, Social Support, Resiliensi Belajar siswa

ABSTRACT

THE EFFECT OF TEACHER REWARD AND SOCIAL SUPPORT ON THE LEARNING RECILIENCY OF CLASS XI STUDENTS AT SMA NEGERI 1 ASAHAN DISTRICT

CYNTHIA FITRI KAUTSAR NPM. 201804015

Learning recilience refers to students' efforts to overcome obstacles that stress them out and impede their ability to learn, allowing them to adapt and successfully complete every academic requirement. Educators must develop students' learning recilience in order to create a successful learning process. This study aims to examine how rewards and social support affect students' capacity for learning. Ex post facto co-relation study design and quantitative research methodology are both used in this study. The study was carried out at the Asahan Regency's SMA Negeri 1 Kisaran. 252 students make up the total population, and 155 students were selected for the samples. Proportional random sampling was the method that was employed. The teacher reward scale, teacher social support scale, and student learning resilience are used as measuring tools in this study. The research results show a positive and significant influence of rewards on learning resilience with a correlation coefficient ry₁, r_{count} (0.457) > r_{table} (0.361) with t_{count} (6.353) $> t_{table}$ (1.960). Then there is a significant positive influence of social support on learning resilience with a correlation coefficient ry₂, r_{count} (0.562) $> r_{table}$ (0.361) with t_{count} (8.408) $> t_{table}$ (1.960). Simultaneously there is a significant positive influence of reward and social support on learning resilience with a correlation coefficient of ry_{12} , r_{count} (0.666) > r_{table} (0.361) of 44.3% and a significant test of F_{count} (60.568) > F_{table} (3.90).

Keywords: Reward, Social Support, Learning Recilience

1. Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

KATA PENGANTAR

Puji syukur atas kehadirat Tuhan Yang Maha Esa atas kasih dan kehadiran-Nya selama perkuliahan hingga tesis ini selesai. Adapun tesis ini berjudul "Pengaruh Reward Dan Social Support Guru Terhadap Resiliensi Belajar Siswa Kelas XI di SMA Negeri 1 Kabupaten Asahan". Tujuan penulisan tesis ini ialah untuk melengkapi persyaratan mendapatkan gelar Magister Psikologi pada Program Pascasarjana Psikologi di Universitas Medan Area.

Penulis sadar memiliki kekurangan dalam penulisan Tesis ini, Maka dari itu dengan senang hati menerima saran dan kritikan demi menyempurnaan dan meningkatan khasanah pengetahuan dan bobot dari Tesis ini. Penulis berharap semoga Tesis ini dapat bermanfaat dan berdampak yang baik bagi perkembangan Ilmu Pengetahuan, dunia usaha maupun pemerintah.

Medan, April 2024

Cynthia Fitri Kautsar

Access From (repository.uma.ac.id)7/6/24

UCAPAN TERIMAKASIH

Puji syukur atas kehadirat Allah SWT yang telah memberikan rahmat dan karunia-Nya kepada penulis hingga mampu menyelesaikan Tesis yang berjudul "Pengaruh Reward Dan Social Support Guru Terhadap Resiliensi Belajar Siswa Kelas XI di SMA Negeri 1 Kabupaten Asahan". Tesis ditulis untuk melengkapi persyararan dalam memperoleh gelar Magister Psikologi pada Program Studi Magister Psikologi di Universitas Medan Area.

Pada proses penyusunan Tesis ini penulis banyak mendapatkan bantuan materil, dukungan moril, dan bimbingan dari berbagai pihak. Untuk itu penghargaan dan ucapan terima kasih penulis sampaikan kepada :

- 1. Rektor Universitas Medan Area, Prof. Dr. Dadan Ramdan, M.Eng., M.Sc.
- Direktur Pascasarjana Universitas Medan Area, Prof. Dr. Ir. Hj. Retna Astuti Kuswardani, MS
- Ketua Program Studi Magister Psikologi, Ibu Dr. Suryani Hardjo, S.Psi.,
 MA., Psikolog.
- 4. Komisi Pembimping I dan II, Ibu Prof. Dr. Asih Menanti, S.Psi., MS dan Dr. Nadra Ideyani Vita., M.Si yang telah membimbing dan memberi arahan dengan sabar kepada penulis sehingga dapat menyelesaikan tesis ini.
- 5. Ayah dan Mamak yang selalu memberi dukungan dan motivasi agar terselesaikan dengan baik tugas ini, serta adik saya dan keluarga besar saya.
- 6. Staf Dosen dan Karyawan Program Pascasarjana Universitas Medan Area.
- Kepala Sekolah dan Wakil Kepala Sekolah, guru dan siswa siswi SMA Negeri I Kabupaten Asahan yang telah turut andil dalam proses peneliatian ini.

- Rekan-rekan mahasiswa Pascasarjana Universitas Medan Area seangkatan 2020/2021.
- 9. Sahabat Gesrek yang selalu mensupport hingga sekarang

Penulis sadar Tesis ini memiliki banyak kekurangan, oleh karena itu dengan senang hati penulis memberi kesempatan kepada para pembaca untuk menyampaikan saran maupun kritikan untuk penyempurnaannya dalam upaya menambah khasanah pengetahuan dan bobot dari Tesis ini. Semoga Tesis ini dapat berguna baik bagi perkembangan ilmu pengetahuan maupun bagi dunia usaha dan pemerintah.

Medan,

April 2024

Penulis,

Cynthia Fitri Kautsar NPM. 201804015

 $1.\ Dilarang\ Mengutip\ sebagian\ atau\ seluruh\ dokumen\ ini\ tanpa\ mencantumkan\ sumber$

DAFTAR ISI

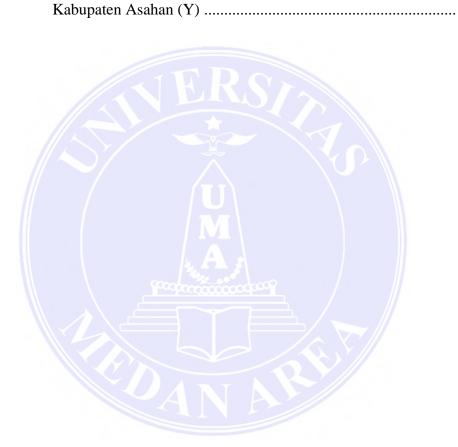
	Halan
HALAM	IAN PERSETUJUAN
ABSTR	AK
ABSTRA	CT
KATA I	PENGANTAR
UCAPA1	N TERIMAKASIH
DAFTA	R ISI
DAFTA	R TABEL
DAFTA	R GAMBAR
DAFTA	R LAMPIRAN
BAB I	PENDAHULUAN
D11D 1	1.1 Latar Belakang Masalah.
	1.2 Identifikasi Masalah
	1.3 Rumusan Masalah
	1.4 Tujuan Penelitian
	1.5 Manfaat Penelitian
- ·	
BAB II	TINJAUAN PUSTAKA
	2.1 Kerangka Teori
	2.2 Penelitian Relevan
	2.3 Kerangka Konseptual
	2.4 Hipotesis
BAB III	METODE PENELITIAN
	3.1 Desain Penelitian
	3.2 Tempat Dan Waktu Penelitian
	3.3 Identifikasi Variabel
	3.4 Definisi Operasional
	3.5 Populasi Dan Sampel
	3.6 Teknik Pengambilan Sampel
	3.7 Metode Pengumpul Data
	3.8 Validitas Alat Ukur
	3.9 Reliabilitas Alat Ukur
	3.10 Prosedur Penelitian
	3.11 Teknik Analisis Data
RARIV	HASIL PENELITIAN DAN PEMBAHASAN
	4.1 Orientasi Kancah Penelitian
	4.2 Persiapan Penelitian
	4.3 Pelaksanaan Penelitian
	4.4 Analisis Data Dan Hasil Penelitian
	4.4 Pembahasan
BAB V	KESIMPULAN DAN SARAN
DAD V	5.1 Kesimpulan
	5.2 Saran
DAFTA	R PUSTAKA

DAFTAR TABEL

	Halam	ıan
Tabel 3.1	Jumlah Popolasi Penelitian	38
Tabel 3.2	Jumlah Sampel Penelitian	40
Tabel 3.3	Kisi-Kisi Skala Pemberian <i>Reward</i> Guru Terhadap Resiliensi Belajar Siswa di Kelas	42
Tabel 3.4	Penilaian Skala Pemberian <i>Reward</i> Guru Terhadap Resiliensi Belajar Siswa di Kelas	43
Tabel 3.5	Kisi-Kisi Skala Pemberian <i>Social Support</i> Guru Terhadap Resiliensi Belajar Siswa di Kelas	44
Tabel 3.6	Penilaian Skala Pemberian Social Support Guru Terhadap Resiliensi Belajar Siswa di Kelas	45
Tabel 3.7	Kisi-Kisi Skala Resiliensi Belajar Siswa	45
Tabel 3.8	Penilaian Skala Resiliensi Belajar Siswa	46
Tabel 3.9	Klasifikasi Nilai Koefisien Korelasi	54
Tabel 4.1	Distribusi Aitem Reward Sebelum Uji Coba	61
Tabel 4.2	Distribusi Aitem Social Support Sebelum Uji Coba	63
Tabel 4.3	Distribusi Aitem Resiliensi Belajar Sebelum Uji Coba	64
Tabel 4.4	Distribusi aitem skala reward setelah uji coba	67
Tabel 4.6	Distribusi Aitem Skala Social Support Setelah Uji Coba	68
Tabel 4.7	Distribusi Aitem Skala Resiliensi Belajar Setelah Uji Coba	69
Tabel 4.7	Analisis Deskriptif Data Penelitian	71
Tabel 4.8	Distribusi Frekuensi Skor Reward	72
Tabel 4. 9	Distribusi Frekuensi Skor Social Support	73
Tabel 4.10	Distribusi Frekuensi Skor Resiliensi	75
Tabel 4.11	Tingkat Kecenderungan Variabel Resiliensi Siswa Kelas XI SMA Negeri 1 Kabupaten Asahan (Y)	76
Tabel 4.12	Tingkat Kecenderungan Variabel Reward (X ₁)	77
Tabel 4.13	Tingkat Kecenderungan Variabel Social support (X2)	78
Tabel 4.14	Rangkuman Analisis Uji Normalitas	79
Tabel 4.15	Rangkuman Anava Uji Keberartian Antara X1 Dengan Y	80
Tabel 4.16	Rangkuman Anava Uji Keberartian Antara X ₂ Dengan Y	81
Tabel 4.17	Rangkuman Uji Independensi Antar Variabel /Multikolinear	82
Tabel 4.18	Rangkuman Hasil Analisis Korelasi X ₁ Dengan Y Dan Uji Keberartiannya	83

Tabel 4.19	Rangkuman Hasil Analisis Korelasi X ₂ Dengan Y Dan Uji Keberartiannya	84
Tabel 4.20	Rangkuman Hasil Analisis Korelasi Dan Uji Keberartian Variabel X_1 dan X_2 Dengan Y	86
Tabel 4.21	Rangkuman Analisis Regresi Ganda	87
Tabel 4.22	Rangkuman Analisis Korelasi Parsial	88

DAFTAR GAMBAR


Gambar 4.2 Histogram Social Support (X₂)

Gambar 4.3 Histogram Resiliensi Siswa Kelas XI SMA Negeri 1

	Halar	nan
Gambar 2.1	Bagan Kerangka Konseptual Pengaruh Reward Dan Social Support Terhadap Resiliensi Belajar Siswa Kelas XI di SMA Negeri 1 Kisaran Kabupaten Asahan	31
Gambar 4.1	Histogram Reward (X ₁)	72

74

75

DAFTAR LAMPIRAN

		iiii
Lampiran 1 Lampiran 2	Uji Validitas Alat Ukur Reward Uji Validitas Alat Ukur Social Support	101 103
Lampiran 3	Uji Validitas Alat Ukur Resiliensi Belajar	105
Lampiran 4	Uji Reliabilitas Reward	107
Lampiran 5	Uji Reliabilitas Social Support	108
Lampiran 6 Lampiran 7	Uji Reliabilitas Resiliensi Belajar	109 110
Lampiran 8 Lampiran 9	Analisis Deskriptif Data	114 118
Lampiran 10	Uji Persayaratan Normalitas	122
Lampiran 11	Uji Kelinieran Regresi Y Atas X ₁	130
Lampiran 12 Lampiran 13 Lampiran 14	Uji Kelinieran Regresi Y Atas X ₂	137 144 145
Lampiran 15 Lampiran 16 Lampiran 17	Uji Koefisien Korelasi	148 149 151
Lampiran 18	Skala Reward	154
Lampiran 19	Skala Social Support	157
Lampiran 20	Skala Resiliensi Belajar	160
Lampiran 21 Lampiran 22	Pedoman Wawancara	163 164
Lampiran 23	Surat Penelitian	166

Halaman

BABI

PENDAHULUAN

1.1 Latar Belakang Masalah

Untuk menjalani kehidupan yang baik, kita harus belajar. Menurut Ahdar (Djamaluddin, 2019), "belajar adalah suatu proses perubahan kepribadian seseorang, perubahan tersebut berupa peningkatan kualitas tingkah laku, dalam arti luas seperti peningkatan pengetahuan, keterampilan, daya pikir, pemahaman, sikap. dan berbagai kemampuan lain". Belajar juga merupakan unsur yang fundamental dalam masing-masing tingkatan pendidikan. Maka dari itu pendidikan dan belajar sangat berkaitan karena memiliki tujuan yang sama yaitu untuk mengembangkan potensi diri pada seseorang agar memiliki kekuatan dan kemampuan untuk menjalani hidup yang lebih baik.

Pendidikan dapat dilakukan siswa dimana saja, terutama di sekolah. Sekolah berfungsi sebagai tempat berinteraksi sekaligus mendidik siswa dalam memperoleh ilmu pengetahuan. Pengendalian emosi siswa merupakan salah satu interaksi yang sangat dipengaruhi oleh lingkungan sekolah terhadap perkembangannya. Siswa yang dapat mengelola emosinya dengan baik akan mampu berinteraksi dengan orang disekitarnya dan melakukan proses belajar mandiri dengan baik. Akan tetapi jika sebaliknya maka peserta didik tidak akan mampu berinteraksi dengan baik, hal ini membatasi kesempatan mereka untuk berkembang.

Peserta didik di tingkat Sekolah Menengah Atas merupakan masa remaja akhir yang mana sedang mengalami transisi dalam pencarian identitas diri. Pada pada proses pencarian identitas tersebut mereka akan mengalami beberapa

goncangan yang akan menyebabkan krisis identitas pada dirinya. Maka dari itu pada masa ini mereka dituntut untuk memiliki resiliensi agar mereka mampu berjuang dalam menghadapi setiap kesulitan, masalah atau penderitaan yang terjadi. Akan tetapi dalam meningkatkan resiliensi mereka membutuhkan pendampingan orangtua, sebab emosi mereka belum stabil dalam menghadapi dinamika kehidupan dalam dunia pendidikan.

Menurut Grotberg (dalam Hendriani, 2018) menjelaskan bahwa "resiliensi merupakan kemampuan untuk bertahan dan beradaptasi serta kapasitas manusia untuk menghadapi dan memecahkan masalah setelah mengalami kesengsaraan". Hal yang sama juga dijelaskan Grenee (dalam Hendriani, 2018) bahwa "resiliensi merupakan kemampuan untuk mengatasi rasa sakit dan mentransformasikan diri atau kapasitas untuk memelihara kondisi diri agar tetap berfungsi secara kompeten dalam menghadapi berbagai stresor dalam hidup". Dari penjelasan kedua ahli tersebut dapat disimpulkan bahwa resiliensi merupakan kemampuan memelihara diri yang harus dimiliki setiap manusia agar tetap berfungsi secara kompeten dalam memecahkan, mengatasi dan menghadapi stresor.

Dewasa ini perkembangan pendidikan tidak stabil yang mana pada tahun 2020 siswa dituntut untuk mampu melakukan proses pembelajaran secara daring dari rumah dikarenakan pandemi COVID. Setelah selesai pandemi siswa juga dituntut untuk memahami pembelajaran yang telah terintegrasi dengan teknologi. Dinamika-dinamika inilah yang sering menggoncang keinginan dan semangat peserta didik dalam mengikuti proses pembelajara. Seperti mereka mudah merasa bosan, jenuh, malas, bahkan sering tidak hadir, ataupun hanya

sebentar hadir dalam proses pembelajaran. Siswa juga sering tidak menyelesaikan tugas yang diberikan guru, terlambat masuk kelas, dan tidak menyiapkan dirinya untuk proses pembelajaran selanjutnya. Perilaku peserta didik menunjukkan bahwasanya mereka kurang resilien dalam menghadapi setiap masalah dalam proses pembelajaran.

Sejalan dengan pernyataan tersebut penelitian terdahulu yang dilakukan Dewi Kumala Sari (2020) dengan judul Resiliensi akademik dan kepuasan belajar daring di masa pandemi covid-19: peran mediasi kesiapan belajar daring, menjelaskan bahwa:

"Resiliensi akademik dan kesiapan belajar daring berpengaruh signifikan berperan terhadap kepuasan belajar daring mahasiswa. Mahasiswa akan siap menghadapi pembelajaran daring dan puas dalam belajar jika resiliensi akademiknya tinggi. Penelitian ini bertujuan untuk mengetahui gambaran mengenai dampak Covid-19 terhadap dunia pendidikan, khususnya pendidikan tinggi."

Dari penelitian tersebut dapat disimpulkan bahwasanya siswa yang memiliki resiliensi belajar yang tinggi maka mereka akan lebih tangguh dan menganggap kegagalan bukanlah titik akhir segalanya. Meskipun berada dalam keadaan yang sulit dan banyak tekanan dalam proses pembelajaran mereka akan tetap mengikuti pembelajaraan. Mereka tidak mengenal keadaan dunia pendidikan baik itu pada saat pandemi COVID – 19 maupun pasca pandemi COVID 19. Dan di era serba canggih ini yang mana peserta didik dituntut untuk mampu malakukan proses pembelajaran mandiri dengan bantuan teknologi. Peran pendidik hanya memfasilitasi dan membimbing peserta didik untuk melakukan proses pemebelajaran yang telah terintegrasi dengan teknologi.

Maka dari itu pentingnya peserta didik memiliki resiliensi agar mereka dapat bertahan dan beradaptasi dengan kondisi saat ini. Kemampuan bertahan dan beradaptasi dengan masalah merupakan kemampuan resiliensi. Permasalahan tersebut dialami ketika mengikuti proses pembelajaran di sekolah. Maka siswa harus memiliki resiliensi belajar karena semakin tinggi resiliensi belajar, maka semakin baik pula kesiapan siswa untuk belajar, hal tersebut dapat meningkatkan kepuasan belajar.

Akan tetapi keadaan yang terjadi di sekolah tidak seperti pernyataan yang telah dijelaskan. Dari data awal yang didapatkan melalui pengamatan pada saat pra penelitian di SMA Negeri 1 Kisaran Kabupaten Asahan terhadap 37 siswa kelas XI IPS 1 diketahui bahwa sebanyak 43% tingkat resiliensi belajar siswa rendah dan 5,4% siswa memiliki tingkat resiliensi belajar yang tinggi. Hal tersebut menunjukkan bahwasanya tidak banyak siswa yang mampu bertahan untuk tetap fokus dalam proses pembelajaran ketika mengalami kesulitan belajar. Dikarenakan ketika mereka mengalami kesulitan dan masalah dalam proses pembelajaran mereka tidak memiliki cara penyelesaiannya, sehingga mereka akan menunjukkan perilaku negatif pada saat proses pembelajaran.

Seperti pada saat belajar terdapat 16 siswa yang tidak aktif duduk di kursi paling belakang. Ketika guru menyuruh menyelesaikan tugas di papan tulis, siswa tersebut tidak berani menatap mata guru dan ketika dipanggil salah satu dari mereka, siswa tersebut ragu-ragu untuk melakukannya. Ketika bel pulang sekolah berbunyi akan tetapi proses pembelajaran masih tetap berlangsung, salah satu diantara mereka tidak segan untuk mengingatkan bel tersebut. Ketika

mereka diberi projek kelompok mereka tidak mau menyelesaikan bersama teman.

Maka dari itu pada saat melakukan kesalahan mereka langsung dimarahi dan tidak diberi kesempatan untuk menjelaskannya, karena sering menunjukkan perilaku negatif pada saat proses pembelajaran. Sehingga guru tidak mempedulikan apapun penyebab masalah tersebut terjadi. Dan pada saat proses pembelajaran berakhir guru sering memberikan beberapa pertanyaan pemantik untuk mengetahui sejauh mana pengetahuan yang telah didapatkan siswa. Akan tetapi tidak ada satupun diantara mereka yang mampu menjawab pertanyaan tersebut. Data tersebut menunjukkan bahwasanya masih banyak siswa Kelas XI di SMA Negeri 1 Kisaran Kabupaten Asahan memiliki resiliensi belajar yang rendah.

Kurangnya resiliensi belajar siswa terjadi karena kurangnya pemberian *reward* dalam proses pembelajara. Seperti yang disampaikan oleh salah satu siswa di Kelas XI IPS 1 dengan inisial APS, sebagai berikut:

"Ketika kami disuruh untuk menjawab pertanyaan di papan tulis, atau secara lisan, dan menyelesaikan tugas yang diberikan guru, kami tidak pernah dapat pujian jika mampu menjawab dengan benar, kami hanya mendapat nilai yang tinggi. Tetapi jika salah kami akan diberi hukuman karena tidak bisa menjawabnya dengan benar. Hukuman yang diberikan berupa nilai yang rendah dan hukuman lainnya."

Dari hasil wawancara tersebut dapat dilihat bahwa guru kurang memberi *reward* untuk mengapresiasi hasil kerja anak. Seharusnya untuk memperkuat resiliensi belajar siswa guru dapat menggunakan metode pemberian *reward*, karena *reward* merupakan reinforcement positif yang dapat memperkuat perilaku.

¹ Wawancara dilaksanakan tanggal 25 April 2022, di SMA Negeri 1 Kabupaten Asahan

Tetapi jika guru ingin meniadakan perilaku yang tidak baik guru dapat memberikan hukuman pada siswa.

Selain itu permasalah kurangnya resiliensi belajar siswa terjadi karena kurangnya *social support* guru terhadap siswa di SMA Negeri 1 Kisaran Kabupaten Asahan. Hal tersebut sesuai dengan yang pemaparan dari satu siswa Kelas XI IPS 1 di SMA Negeri 1 Kisaran Kabupaten Asahan dengan inisial SC, sebagai berikut:

"Pada saat kami dalam kesulitan guru tidak membantu kami baik berupa pemberian nasihat, informasi, bahkan saran agar kami bisa menghadapi dan menyelesaikan masalah dengan baik. Tetapi selalu memarahi kami karena kami tidak bisa menyelesaikannya dengan baik, Dan memberi tatapan tidak senang yang membuat kami tidak nyaman dan tertekan ketika guru masuk Kelas."

Dari hasil wawancara tersebut dapat dilihat bahwa guru tidak memberi social support yang dapat menimbulkan rasa nyaman, tentram pada siswa. Perasaan tersebut akan membentuk kemampuan siswa dalam meregulasi emosi, mengendalikan keinginan, dorongan dan kesukaan, serta membentuk kemampuan dalam mengidentifikasi masalah sehingga dapat menghadapi dan menyelesaikannya permasalahan dengan tenang tanpa stres.

Untuk meningkatkan resiliensi belajar peserta didik, pendidik harus mengetahui faktor yang mempengaruhi resiliensi belajar yaitu pemberian *reward* dan *social support*. Purwanto (dalam Atik, 2019) menjelaskan bahwasanya *reward* merupakan alat mendidik anak agar anak merasa senang karena perbuatan atau pekerjaannya mendapat penghargaan. Menurut Rosyid (2018) "*reward* merupakan salah satu bentuk motivasi dan sebagai pendukungan atas perilaku yang sesuai". Pemberian *reward* bertujuan untuk memberikan *reinforcment*

²Wawancara dilaksanakan tanggal 25 April 2022, di SMA Negeri 1 Kabupaten Asahan

Document Accepted 7/6/24

(penguatan) terhadap perilaku yang baik sehingga akan memotivasi peserta didik untuk terus maju dan berkembang dalam proses pembelajaran. Sehingga dengan pemberian *reward* peserta didik akan menjadi semangat untuk menghadapi setiap permasalahan yang dialami selama belajar.

Hal ini sejalan dengan penelitian Saragih (2022) yang menjelaskan bahwa adanya pengaruh yang signifikan pemberian reward dari guru terhadap resiliensi anak usia dini telah terjawab dengan hasil penelitian dari perhitungan regresi linear berganda menunjukkan nilai linearity F = 27,018 dan F Regresi, F = 21,584 dan P = 0.000 (< 0,00 hal tersebut menunjukkan bahwa pengaruh kedua variable positif.

Dari pernyataan tersebut dapat disimpulkan bahwasanya pemberian reward sangat berpengaruh terhadap ketahanan belajar peserta didik. Karena dengan pemberian reward tersebut meraka akan merasa dihargai. Harga diri tersebut akan mempengaruhi rasa percaya diri mereka terhadap kemampuan yang mereka miliki. Sehingga mereka akan bersemangat dalam mengembangkannya pada saat proses pembelajaran. Dan mereka akan mampu menyelesaikan tanggung jawab yang telah dibebankan kepada mereka tanpa merasa tertekan akibat tanggung jawab tersebut.

Selain itu menurut Holday & Pherson (dalam Sovitriani, 2021)menjelaskan "beberapa faktor yang mempengaruhi resiliensi adalah social support (dukungan sosial), cognitive skill, physchological resouces. Social support (dukungan sosial) merupakan dukungan eksternal dari orang sekitar yang dapat mempengaruhi pembentukan resiliensi belajar anak". Dengan dukungan tersebut segala tekanan psikologis pada masa-masa sulit dapat

UNIVERSITAS MEDAN AREA

teratasi. Orang-orang dengan dukungan sosial yang tinggi akan lebih mudah menghadapi permasalahan yang terjadi tanpa ada rasa stress yang tinggi karena mereka meyakini bahwa akan ada orang terdekat yang membantunya dan memberinya dukungan yang positif.

Hal ini sejalan dengan penelitian Fatimah (2021) yang menjelaskan bahwa siswa yang memiliki resiliensi akan lebih tangguh dan percaya bahwa kegagalan bukanlah akhir dari segalanya. Dukungan sosial memberikan pengaruh sebesar 12,3% terhadap resiliensi siswa. Sedangkan 87,7% dipengaruhi oleh variabel lain yang bukan menjadi subjek utama penelitian ini. Maka dari itu dukungan sosial dari orang-orang disekitarnya selama masa pandemi Covid-19 dapat memberikan kepercayaan terhadap siswa untuk bertahan dan menyesuaikan diri dengan keadaan baru seperti memaksa untuk menyelesaikan tugas akademiknya dari rumah.

Dari penjelasan penelitian terdahulu tersebut dapat disimpulkan bahwasanya reward dan social support dapat mempengaruhi resiliensi belajar peserta didik. Dengan pemberian reward tersebut peserta didik dapat memiliki rasa percaya diri terhadap kemampuannya dalam bertahan ketika stressor menyerang. Dan dengan pemberian social support peserta didik akan memiliki berbagai cara untuk menyelesaikan masalahnya. Karena ketika mereka mengalami kesulitan dan tidak mampu menyelesaikan permasalahan yang terjadi pada saat proses pembelajaran mereka memiliki guru yang selalu memberi dukungan dan bantuan untuk menghadapi dan menyelesaikan masalah tersebut. Berdasarkan uraian tersebut maka penulis tertarik untuk meneliti dengan judul

"Pengaruh *Reward* Dan *Social Support* Terhadap Resiliensi Belajar Siswa Kelas XI di SMA Negeri 1 Kisaran Kabupaten Asahan".

1.2 Identifikasi Masalah

Berdasarkan latar belakang di atas, maka dapat di identifikasikan beberapa masalah sebagai berikut:

- Kurangnya kemampuan Resiliensi Belajar Siswa Kelas XI di SMA Negeri 1 Kisaran Kabupaten Asahan.
- 2. Resiliensi Belajar dipengaruhi Faktor Internal dan Faktor Eksternal.
- 3. Reward dan social support guru terhadap siswa merupakan faktor eksternal yang mempengaruhi resiliensi belajar siswa Kelas XI di SMA Negeri 1 Kisaran Kabupaten Asahan.
- Reward dapat meningkatkan resiliensi belajar siswa Kelas XI di SMA Negeri 1 Kisaran Kabupaten Asahan
- 5. Terdapat guru yang tidak menerapkan pemberian *reward* dalam proses pembelajaran.
- Social support dapat meningkatkan resiliensi belajar siswa Kelas XI di SMA Negeri 1 Kisaran Kabupaten Asahan.
- 7. Terdapat guru yang tidak melakukan *social support* dalam proses pembelajaran.

1.3 Rumusan Masalah

Berdasarkan latar belakang dan identifikasi masalah di atas, maka rumusan masalah dalam penelitian ini adalah:

- 1. Apakah pemberian r*eward* guru berpengaruh terhadap resiliensi belajar siswa Kelas XI di SMA Negeri 1 Kisaran Kabupaten Asahan?
- 2. Apakah social support guru berpengaruh terhadap resiliensi belajar siswa Kelas XI di SMA Negeri 1 Kisaran Kabupaten Asahan?
- 3. Apakah ada perbedaan pengaruh *reward* dan *social support* terhadap resiliensi belajar Kelas XI di SMA Negeri 1 Kisaran Kabupaten Asahan?

1.4 Tujuan Penelitian

- Untuk menganalisis pengaruh reward terhadap resiliensi belajar siswa Kelas XI di SMA Negeri 1 Kisaran Kabupaten Asahan.
- 2. Untuk menganalisis pengaruh *social support* terhadap resiliensi belajar siswa Kelas XI di SMA Negeri 1 Kisaran Kabupaten Asahan.
- 3. Untuk menganalisis perbedaan pengaruh *reward* dan *social support* terhadap resiliensi belajar siswa Kelas XI di SMA Negeri 1 Kisaran Kabupaten Asahan.

1.5 Manfaat Penelitian

Manfaat yang diperoleh dari penelitian ini sebagai berikut:

1. Manfaat teoritis

Temuan penelitian ini akan memperluas pengetahuan tentang Psikologi Pendidikan terkhusus tentang pengaruh *reward* dan *social support* terhadap resiliensi siswa Sekolah Menengah Atas.

- 2. Manfaat Praktis
 - a. Bagi sekolah

- Temuan penelitian ini dapat digunakan untuk bahan masukan dalam program pengembangan resiliensi siswa di sekolah .
- b. Bagi pihak yang berminat terhadap kajian psikologi pendidikan khususnya yang ingin mengetahui lebih jauh mengenai permasalahan yang diangkat dalam penelitian ini. Maka hasil penelitian ini menjadi salah saru acuan pentingnya penelitian lebih lanjut dilakukan.

BAB II

TINJAUAN PUSTAKA

2.1 Kerangka Teori

2.1.1 Resiliensi Belajar

2.1.1.1 Pengertian Resiliensi

Menurut Wiwin (2018) "reseliensi merupakan proses yang dinamis yang terkait dengan dengan peran berbagai faktor individu, sosial dan lingkungan yang mencerminkan kekuatan dan ketahanan seseorang dari pengalaman emosional negatif dalam situasi sulit yang menekan". Menurut Kaplan (dalam Wiwin, 2018) "resiliensi merepresentasikan kemampuan untuk berfungsi secara kompeten untuk menghadapi stresor kehidupan". Resiliensi psikologis akan mencerminkan kekuatan dan ketahanan yang ada didalam diri manusia. Reseliensi psikologis ditandai oleh kemampuan untuk beregenerasi setelah mengalami emosional yang negatif. Seseorang yang resiliensi akan berusaha untuk menghadapi dan kemudian sembuh dari berbagai kondisi stress dengan kemampuan yang dimiliki.

Resiliensi yang dimiliki manusia bukan bersifat menetap sejak dia lahir. Seperti yang dijelaskan Garmezy sebagaimana dikutip oleh Wiwin (2018) yang menyampaikan bahwa "resiliensi bukan sebuah sifat yang menetap pada diri individu, namun merupakan hasil transaksi yang dinamis antara kekuatan dari luar dengan kekuatan dari dalam individu". Resiliensi tidak dilihat sebagai atribut yang pasti atau semata-mata sebuah luaran, namun sebagai sebuat proses dinamis yang berkembang sepanjang waktu.

Cicihetti yang dikutip oleh Wiwin (2018) menyatakan "ada dua unsur yang harus ada dalam mengidentifikasikan resiliensi, yaitu paparan dari situasi yang sulit dan menekan, dan hambatan atau ancaman yang berat dalam hidup individu terhadap situasi tersebut". Hal ini sesuai dengan pernyataan Luthar yang dikutip oleh Wiwin (2018) menyatakan bahwa "resiliensi akan dapat diketahui ketika manusia menghadapi kendala dan kesulitan, yangmana ia mampu beradaptasi terhadap hambatan/kesulitan tersebut". Resiliensi merupakan kekuatan dan ketangguhan yang ada di dalam diri manusia untuk bangkit dari pengalaman emosional yang negatif hasil transaksi yang dinamis antara kekuatan dari luar dan dari dalam individu yang berkembang sepanjang waktu.

Ungar (dalam Wiwin, 2018) membedakan penggunaan istilah resiliensi yaitu:

"Berasal dari kata "Reciliency" dengan "Recilience". Reciliency digunakan untuk memberikan penjelasan atau gambaran tentang peran dominan dari berbagai kualitas internal individu dalam memunculkan adaptasi yang positif terhadap kesulitan. Sementara Recilience digunakan untuk mendeskripsikan sebuah proses yang melibatkan berbagai macam faktor yang saling berpengaruh satu sama lain. Reciliency berasal dari istilah ego reciliency yang berarti konstruk kepribadian yang memungkinkan seseorang dapat beradaptasi secara fleksibel terhadap situasi yang penuh tekanan. Sementara recilience merupakan upaya memelihara koping dan adaptasi positif dalam menghadapi berbagai macam situasi sulit."

Maka dari itu dapat disimpulkan bahwa Resiliensi merupakan kekuatan dan ketangguhan yang ada didalam diri manusia untuk bangkit dari pengalaman emosional yang negatif yang merupakan hasil transaksi yang dinamis antara kekuatan dari luar dengan kekuatan dari dalam individu dan berkembang sepanjang waktu.

2.1.1.2 Komponen Resiliensi

Grotberg dalam Wiwin (2018) mengidentifakasi komponen resiliensi dengan tiga sumber resiliensi, ketiga sumber ini saling berinteraksi dan mendefenisikan tingkat resiliensi itu kemudian. Adapun ketiga sumber yaitu

- 1. I have sumber resiliensi yang mengacu pada besarnya dukungan sosial dan pemberian reinforcment di sekitar. Sumber ini memiliki beberapa karakteristik yang bisa menjadi pembentukan resiliensi, yaitu: a) hubungan berdasarkan kepercayaan; b) peraturan di lingkungan sekitar; c) teladan; d) mendorong kemandirian; e) akses terhadap fasilitas di kawasan seperti fasilitas pelayanan kesehatan, pendidikan, keamanan dan perlindungan social; f) penguatan negatif dan positif.
- 2. *I am* adalah sumber resiliensi yang berkaitan dengan kekuatan pribadi dalam diri individu. Ini adalah sumber yang mencakup perasaan, sikap dan keyakinan diri. Beberapa kualitas Sumber ini yang dapat menjadi penentu bagi pembentukan resiliensi, yaitu: a) Penilaian personal; b) Memiliki empati, kepedulian dan kasih sayang; c) Merasa bangga dengan diri sendiri; d) Memiliki tanggung jawab; e) Optimis terhadap masa depan.
- 3. I can merupakan sumber resiliensi berkaitan dengan usaha dilakukan seseorang dalam menyelasaikan masalah menuju kesuksesan dengan kekuatan sendiri. Sumber resiliensi ini terdiri dari: a) Kemampuan berkomunikasi; b) Kemampuan problem solving atau pemecahan masalah; c) Kemampuan mengendalikan perasaan, emosi, dan impuls-impuls; d) Kemampuan menjalin hubungna yang penuh kepercayaan."

Grotberg (dalam Wiwin, 2018) menjelaskan bahwa ketiga komponen tersebut saling mempengaruhi perilaku individu menjadi relatif stabil, dengan respons-respons yang bermakna terhadap berbagai macam situasi dan kondisi yang dihadapi. Menurutnya anak dan remaja dapat belajar untuk mampu merespon berbagai tekanan dan kesulitan secara resilien. Perasaan tidak berdaya saat berhadapan dengan tekanan dapat diubah menjadi kekuatan untuk berdaya.

Reivich dan Shatté dalam Wiwin (2018) menyebutkan ada tujuh faktor yang menjadi komponen utama resiliensi, yang meliputi:

- 1) Emotion Regulation (Regulasi Emosi) merupakan kemampuan untuk tetap tenang dalam kondisi stress. Mereka mengungkapkan dua keterampilan yang dapat membantu individu dalam meregulasi emosi yaitu:
 - a) Calming, keterampilan untuk meningkatkan kendali terhadap pikiran melalui relaksasi. dan respons terhadap stres Relaksasi menempatkan anda dalam keadaan tenang dengan mengontrol pernapasan, mengendurkan otot, serta dengan menggunakan teknik positive imagery, yaitu membayangkan tempat yang tenang, damai, dan menyenangkan.
 - b) Focusing, kemampuan berkonsentrasi pada suatu permasalahan akan memudahkan dalam mencari solusi dari permasalahan tersebut. Sebab individu yang dapat fokus pada masalah akan mudah menganalisis dan membedakan penyebab masalah tersebut. Dengan demikian stres dan emosi negatif yang muncul akan berangsur berkurang.

- 2) Impuls Control (Pengendalian Impuls), merupakan kemampuan individu untuk mengendalikan keinginan, dorongan, kesukaan serta tekanan yang mucul dari dalam diri. Individu dapat mengendalikan implusivitasnya dengan mencegah terjadinya kesalahan pemikiran, sehingga dapat memberikan respons yang tepat pada permasalahan yang ada. Kemampuan individu untuk mengendalikan impuls sangat terkait dengan kemampuan regulasi emosi yang dimiliki.
- 3) Optimism (Optimisme), merupakan individu yang percaya bahwa dirinya memiliki kemampuan untuk mengatasi kemalangan yang terjadi di masa depan. Hal ini dapat merefleksikan efikasi diri yakni percaya bahwa ia mampu menyelesaikan permasalahan yang ada dan mengendalikan hidupnya.
- (Analisis Kasual), merupakan kemampuan dalam 4) Casual Analysis mengidentifikasikan secara akurat penyebab dari permasalahan yang sedang dihadapi. Karena individu yang resilien tidak akan menyalahkan orang lain atas kesalahan yang telah terjadi demi harga diri atau membebaskan diri dari rasa bersalah.
- 5) Emphaty (Empati), merupakan kemampuan individu untuk membaca tandatanda kondisi emosional dan psikologis orang lain, mampu untuk menempatkan dirinya pada posisi orang lain, merasakan apa yang dirasakan orang lain dan memperkirakan maksud orang lain. Oleh karena itu, seseorang yang mempunyai kemampuan berempati cendrung mempunyai hubungan sosial yang positif.

- 6) Self Efficacy (Efikasi Diri), merupakan kemampuan individu untuk mengemukakan atau mempresentasikan dalam bentuk sikap dan perilaku terhadap keyakinan dalam memecahkan masalah yang dialami dan mencapai kesuksesan. Dengan keyakinan dan kemampuan tersebut individu akan mampu mencari penyelesaian yang tepat dari permasalahan yang ada, dan tidak mudah menyerah dalam berbagai kesulitan.
- 7) Reaching Out, merupakan kemampuan individu mengatasi dan bangkit dari keterpurukan dan mampu mengambil sisi positif dari kehidupan setelah mengalami hal tersebut.

2.1.1.3 Faktor Resiliensi

Menurut Windle sebagaimana dikutip oleh Wiwin (2018) menjelaskan bahwa "resiliensi terbentuk dari interaksi signifikan antara faktor resiko dan faktor protektif". Dalam hal ini adapatasi yang baik dan berhasil terhadap sesuatu permasalahan mencerminkan kuatnya faktor protektif yang dimiliki individu. Berikut penjelasan tentang faktor yang mempengaruhi resiliensi, yaitu sebagai berikut:

1) Faktor Risiko

Kaplan sebagaimana dikutip oleh Wiwin (2018) mendefenisikan "faktor resiko sebagai prediktor awal dari sesuatu yang tidak diinginkan atau sesuatu yang membuat orang semakin rentan terhadap hal-hal yang tidak diinginkan". Sementara Luthar sebagaimana dikutip oleh Wiwin (2018) mendefenisikan "faktor resiko sebagai sebuah variabel yang memfasilitasi munculnya problem prilaku sebagai respon yang lebih lanjut dari stress".

Faktor resiko bukan stresor yang merupakan penyebab munculnya stress. Karena stresor merupakan sumber stress yang menyebabkan munculnya stress. Sedangkan faktor resiko merupakan segala sesuatu yang mempengaruhi kerentanan seseorang terhadap stres ketika berhadapan atau terpapar oleh stresor. Semakin rentan terhadap strres, maka semakin membuatnya terjebak dalam tekanan yang berkepanjangan. Berbagai macam situasi dapat diidentifikasikan sebagai faktor resiko. Akan tetapi dalam resiliensi pengidentifikasian faktor resiko harus mempertimbangkan besarnya bahaya, hambatan atau tekanan yang ditimbulkan dan dirasakan oleh individu yang bersangkutan.

2) Faktor Protektif

Menurut Kalil dan Luthar sebagaimana dikutip oleh Wiwin (2018) "faktor protektif merupakan hal potensial yang digunakan sebagai alat untuk merancang pencegahan dan penanggulangan berbagai hambatan". Faktor protektif merupakan faktor yang memperkuat dan memberikan pengaruh positif bagi individu untuk mampu memunculkan strategi koping efektif terhadap stress yang dialami. Dalam penelitian Aina (2019) menjelaskan bahwasanya selain adanya kualitas pribadi sebagai pelindung dalam menghadapi faktor risiko, peneliti ini juga menemukan bahwa hadirnya dukungan sosial (*social support*) berperan penting dalam resiliensi. Dukungan sosial dalam penelitian berupa kehadiran keluarga dan kehadiran komunitas. Dukungan sosial ini dapat memberikan kekuatan untuk bangkit dari setiap keterpurukan.

2.1.2 Reward

2.1.2.1 Pengertian Reward

Setiap siswa mempunyai kemampuan untuk berkembang sesuai dengan fungsinya. Namun terkadang pada saat proses pembelajaran, siswa kurang memperhatikan. Maka guru berupaya untuk mendapatkan kembali perhatian mereka dengan cara memberi reward. Reward adalah jenis teori perlakuan positif yang berasal dari aliran behavioristik Skinner. Menurut Skinner (dalam Sitorus 2015), "operant conditioning adalah jenis pembelajaran yang melibatkan penguatan dan hukuman dan memiliki berbagai prinsip penting". Menurut Skinner yang merupakan seorang behavioris sejati, operant conditioning dapat menjelaskan perilaku manusia yang rumit. Dengan menggunakan data penelitiannya, Skinner menyimpulkan bahwa terdapat "prinsip-prinsip dalam pembelajaran, yaitu: reinforcment (penguatan kembali), punishment (hukuman), shaping (pembentukan), extinction (penghapusan), discrimination (pembedaan), dan generalization (generalisasi)".

Penguatan (*reinforcment*) merupakan proses memperkuat prilaku yaitu, misalnya membuat perilaku baik menajadi lebih sering dilakukan. Penguatan ini dapat dilakukan dengan pemberian *reward* (hadiah). Menurut Mulyasa (dalam Rosyid, 2018) "*reward* merupakan respon terhadap suatu perilaku yang dapat meningkatkan kemungkinan terulang kembalinya perilaku tersebut". Selain itu menurut Arikunto (dalam Rosyid, 2018), menegaskan bahwa "*reward* merupakan suatu yang disenangi dan disukai oleh anak yang diberikan kepada siapa yang

dapat memenuhi harapan yakni mencapai tujuan yang ditentukan atau bahkan mampu melampauinya".

M. Ngalim Purwanto (dalam Rosyid, 2018) mengemukakan "reward yang merupakan alat untuk mendidik anak-anak supata dapat merasa senang karena perbuatan atau pekerjaannya mendapat penghargaan". Sedangkan menurut Nugroho (dalam Rosyid, 2018) "reward adalah ganjaran, hadiah, penghargaan atau imbalan yang bertujuan agar seseorang menjadi lebih giat usahanya untuk memperbaiki atau meningkatkan kinerja yang telah dicapai".

Penjelasan tersebut dapat disimpulkan bahwa *reward* adalah penguatan dalam bentuk hadiah, penghargaan atau hal-hal yang menyenangkan lainnya, dimaksud untuk mendorong seseorang agar bekerja lebih keras untuk menghasilkan sesuatu yang mengagumkan sambil untuk mempertahankan, memperbaiki, atau meningkatkan kualitasnya. Pemberian *reward* ini bertujuan untuk memberikan *reinforcement* (penguatan) terhadap perilaku yang baik sehingga akan memotivasi peserta didik untuk terus selalu maju dan berkembang dalam proses pembelajaran.

2.1.2.2 Jenis-Jenis Penguatan

Setiap orang membutuhkan perhatian, pujian, dan sapaan sebagai suatu bentuk penguatan tingkah laku. Maka *Reward* digunakan untuk penguatan (*reinforcement*) tersebut. Penggunaan penguatan (*reinforcement*) di Kelas dengan bentuk *reward* bertujuan memotivasi belajar siswa, pengontrol atau pengubah perilaku yang kurang baik. Menurut Usman (dalam Febianti, 2018) bahwa "penguatan merupakan semua bentuk respons baik berupa verbal/non verbal,

bagian modifikasi perilaku guru terhadap perilaku siswa, dengan pemberian informasi atau umpan balik sebagai tujuan bagi si penerima (siswa) atas perbuatannya, sebagai dorongan ataupun koreksi".

Menurut Febianti (2018) "penguatan merupakan respons terhadap perilaku yang dapat memperbesar kemungkinan terulangnya perilaku tersebut, penguatan diberikan pendidik kepada peserta didik bertujuan untu menyenangkan hati siswa, agar lebih aktif berpartisipasi dalam interaksi belajar-mengajar, juga sebagai pengendalian perubahan tingkah laku ke arah negatif". Dengan penguatan memungkinkan mereka lebih berkonsentrasi lebih baik, memiliki motivasi, dan lebih aktif pada saat belajar. Mereka dapat mengembangkan perilaku yang lebih produktif dan positif pada saat belajar.

Adapun jenis-jenis penguatan (reinforcement) menurut Usman yang (dalam Febianti, 2018) sebagai berikut:

- 1) Penguatan verbal: Biasa diungkapkan atau diutarakan dengan kata-kata pujian, penghargaan (valuation), persetujuan, dan sebagainya, misalnya bagus; bagus sekali; betul; pintar; ya; seratus buat kamu!
- 2) Penguatan non verbal, yaitu:
 - a) Penguatan gerakan isyarat, misalnya mengangguk atau menggelengkan kepala, tersenyum, mengerutkan kening, mengancungkan jempol, raut muka sedih, raut muka ceria, serta sorot mata yang memandang bersahabat (tajam).
 - b) Penguatan pendekatan: Guru melakukan pendekatan pada siswa untuk memberikan perhatian dan kesukaannya terhadap mata pelajaran,

perilaku, atau penampilan rapi siswa. Misalnya, guru berdiri disamping siswa, berjalan menuju siswa, duduk dekat seorang siswa atau sekelompok siswa, atau berjalan di sisi siswa. Penguatan ini bermanfaat untuk menambah penguatan verbal.

- c) Penguatan sentuhan (contact): Guru memberikan persetujuan atau memberikan penghargaan bagi siswa atas usaha dan penampilan mereka dengan cara menepuk bahu atau pundak siswa, menjabat tangan siswa, mengangkat tangan siswa atas kemenangan dalam pertandingan. Penguatan sentuhan harus digunakan dengan seksama agar sesuai dengan usia siswa, jenis kelamin siswa, dan latar belakang kebudayaan setempat.
- d) Penguatan dengan aktivitas menyenangkan: Guru memakai aktivitas atau tugas yang disukai oleh siswa sebagai penguatan. Misalnya, seorang siswa menunjukkan kemajuan pada mata pelajaran seni musik ditunjuk menjadi ketua paduan suara di sekolahnya.
- e) Penguatan berupa benda/simbol: Guru memakai penguatan ini dengan berbagai simbol berupa benda, misalnya kartu bergambar, bintang plastik, lencana, ataupun komentar tertulis di buku siswa. Hal tersebut jangan terlalu sering dilakukan untuk menghindari kebiasaan dalam mengharapkan sesuatu sebagai imbalan.

Saat melakukan kegiatan pembelajaran di kelas, guru harus menggunakan penguatan verbal dan nonverbal untuk meningkatkan keterlibatan, semangat, dan motivasi belajar siswa. Pemberian *reward* kepada siswa didasari atas rasa kasih

sayang dan tanggung jawab. Kasih sayang yang diberikan pendidik kepada siswa dapat memotivasi mereka untuk memenuhi tugasnya dalam memberikan pengajaran yang efektif.

Sikap, nada suara, ekspresi wajah, dan gerakan tubuh guru, harus menunjukkan kehangatan dan semangat saat memberikan reward sehingga siswa dapat merasakan ketulusan guru. Selain itu, siswa harus yakin bahwa mereka pantas mendapatkan reward yang mereka terima dan bahwa mereka benar-benar memahami mengapa reward tersebut diberikan. Selain itu, seorang guru harus menahan diri untuk tidak melontarkan komentar kasar atau lelucon yang memancing cemoohan atau hinaan agar tidak berdampak pada semangat belajar siswa.

2.1.2.3 Prinsip Pemberian Reward

Dalam memberikan reward pendidik harus mengetahui tujuan dari pemberian reward tersebut. dan pendidik harus bijaksana jangan sampai reward menimbulkan iri hari pada siswa yang lainnya yang merasa dirinya lebih pandai tetapi tidak mendapatkannya. Maka dari itu pendidik harus mengetahui prinsipprinsi dalam pemberian reward. Adapun prinsip pemberian reward menurut Fikri (2021) sebagai berikut:

1) Penilain didasarkan pada "perilaku" bukan "pelaku". Karena yang ingin di bentuk perilakunya bukan pelakunya. Maka dari itu panggilan seperti "anak shaleh", "anak pintar" yang menunjukkan sifat pelaku bukan berupa penghargaan terhadap perilaku yang dilakukannya. Maka dari itu pada saat

- memberi hadiah kepada anak pendidik harus menyebutkan secara langsung perilaku anak yang membuatnya memperoleh hadiah.
- 2) Pemberian penghargaan atau hadiah harus ada batasnya. Karena Pemberian hadiah tidak dilakukan seterusnya. Metode ini digunakan hingga anak terbiasa melakukannya. Manakala proses pembiasaan dirasa telah cukup, maka pemberian hadiah harus diakhiri. Maka terlebih dahaulu harus memberikan penjelasan pada anak tentang pembatasan ini.
- 3) Penghargaan berupa perhatian. Karena bentuk hadiah yang terbaik bukanlah berupa materi, tetapi berupa perhatian, dan kasih sayang baik secara verbal maupun nonverbal, dan bahas tubuh.
- 4) Dimusyawarahkan kesepakatan dalam pemberian hadiah. Jelaskan pada anak tentang hadiah apa yang akan diberikan kepadanya.
- 5) Yang dinilai prosesnya, bukan hasilnya. Karena proses jauh lebih penting dari pada hasil. Dalam pembentukan perilaku jika hanya menilai dari hasilnya pasti akan mengabaikan proses dalam pembentukannya karena cendrung akan mengutamakan hasilnya. Akan tetapi dalam membentuk perilaku seseorang proses dalam pembentukannya sangat penting agar anak lebih mengenal tentang perilaku yang boleh dilakukan dan tidak boleh dilakukan beserta alasannya, sehingga pengetahuan tersebut mencapai pada tahap terbiasa.

2.1.3 Social Support

2.1.3.1 Pengertian Social Support

Hubungan Sosial yang baik bagi kesehatan fisik dan mental merupakan pemberian Social Support. Seperti yang dijelaskan Rook (dalam Maslihah, 2011) "social support sebagai satu diantara fungsi pertalian atau ikatan sosial. Ikatan-ikatan sosial menggambarkan tingkat tingkat dan kualitas umum dari hubungan interpersonal". Cobb juga menegaskan (dalam Maslihah, 2011) bahwasanya "social support merupakan suatu kenyamanan, perhatian, penghargaan, atau bantuan yang dirasakan individu dari orang-orang atau kelompok-kelompok lain". Dan sejalan dengan pendapat Cohen dan Wills yang dikutip Maslihah (2011) "social support sebagai pertolongan dan dukungan yang diperoleh seseorang dari interaksinya dengan orang lain".

Social support dihasilkan dari keyakinan bahwa orang lain akan memberikan bantuan jika terjadi dan mengalami keadaan atau peristiwa yang dianggap bermasalah. Keyakinan ini diraskaan dapat meningkatkan emosi positif dan harga diri. Keadaan psikologis ini dapat mempengaruhi cara orang merespon dan berperilaku sehingga berpengaruh terhadap kesejahteraan individu secara umum. Senada dengan pendapat tersebut, Cobb (dalam Maslihah, 2011) menyatakan "setiap dari lingkungan sosial yang menimbulkan persepsi individu bahwa individu menerima efek positif, afirmasi, atau bantuan menunjukkan suatu ungkapan dari adanya social support". Adanya perasaan didukung oleh lingkungan membuat segala sesuatu menjadi lebih mudah terutama pada waktu menghadapi peristiwa yang menekan.

Berdasarkan penjelasan di atas *social support* dapat diartikan sebagai adanya hubungan sosial yang berkualitas yang menimbulkan rasa nyaman, rasa disayangi, dihargai, dibantu yang akan menghasilkan emosi positif dan meningkatkan harga diri seseorang. Karena manusia merupakan makhluk sosial yang bergantung hidup pada orang lain untul bertahan hidup. Maka social support sangat penting bagi manusia dalam menjalankan kehidupan bermasyarakat. Social Support juga dapat mengubah kepribadian seseeorang menjadi lebih bersimpati, berempati, dan sayang terhadap sesama.

Menurut Gott Lieb (dalam Nurs, 2007) menjelaskan bahwa "social support terdiri atas informasi atau nasihat verbal atau non verbal, bantuan atau tindakan nyata yang diberikan karena keakraban sosial atau diperoleh karena kehadiran mereka dan mempunyai manfaat emosional atau efek perilaku bagi penerima". Keberlangsungan hidup seseorang sangat dipengaruhi oleh jaringan sosialnya. Karena mereka bisa mendapatkan social support dari orang terdekat disekitarnya seperti teman, keluarga, sahabat, guru, psikolog, tetangga atau yang lain. Menurut Garmenzy (dalam Maslihah, 2011) manfaat social support, yakni dengan adanya dukungan sosial dapat menurunkan kecemasan, yang mana kecemasan merupakan salah satu faktor timbulnya stres". Hal ini didukung oleh Oford (dalam Maslihah, 2011) yang menjelaskan bahwa "social support bertujuan mengurangi dampak stres yang dialami seseorang".

2.1.3.2 Jenis – Jenis Social Support

Untuk menjelaskan konsep *social support*, maka para peneliti membedakan *social support* menjadi beberapa jenis. Hal ini sangat berguna

Document Accepted 7/6/24

karena dapat menunjukkan beberapa situasi yang penuh stress yang memerlukan jenis dukungan yang berbeda. House (dalam Nurs, 2007) membedakan empat jenis atau dimensi *Social Support*, yaitu sebagai berikut:

- 1) Emotional support (dukungan emosional), merupakan dukungan yang diungkapkan melalui perasaan positif seperti ungkapan empati, kepedulian, dan perhatian terhadap orang yang bersangkutan. Dukungan ini akan menyebabkan penerima dukungan merasa nyaman, tentram, merasa dicintai ketika dia mengalami masalah.
- 2) Dukungan penghargaan, merupakan bentuk dukungan yang diekspresikan dengan memberi penghargaan atau tanpa syarat dan apa adanya. Dukungan ini menyebabkan individu dapat menerima dan membangun rasa menghargai dirinya, percaya diri dan bernilai.
- 3) Instrumental support (dukungan instrumental), merupakan bentuk dukungan yang diwujudkan dalam bentuk langsung yang mengacu pada penyediaan barang dan jasa. Seperti orang yang memberi pinjaman kepada sahabatnya.
- 4) Information support (dukungan informasi), merupakan dukungan yang diungkapkan dam bentuk pemberian saran dan nasihat yang membangun dan membentuk motivasi seseorang untuk menyelesaikan masalahnya.

Jenis dukungan yang dijelaskan di atas digunakan sesesuai dengan keadaan-keadaan stress yang dialami seseorang. Ketika seseorang mengalami tekan yang dirasakan oleh perasaan maka orang tersebut membutuhkan dukungan emosional. Ketika seseorang mengalami tekanan karena tuntutan tugas yang lebih besar daripada kemampuan yang dimilikinya karena tidak ada

menghargainya maka seseorang butuh dukungan penghargaan dari orang sekitarnya. Ketika seseorang mengalami tekanan yang berasal dari keuangan atau finansialnya maka orang tersebut membutuhkan dukungan instrumental. Sedangkan ketika seseorang mengalami stress dikarenakan bimbingan harus memilih yang mana maka orang tersebut membutuhkan dukungan informasi.

2.1.3.3 Fungsi Dan Manfaat Social Support

Adapun fungsi dari Social Support yaitu sebagai berikut:

- Kedekatan perasaan emosional yang timbul dari rasa nyaman, dicintai, dihargai, dan dibantuk ketika sedang mengalami masalah.
- 2) Penghargaan dalam bentuk pengakuan terhadap kemampuan seseorang.
- 3) Ikatan kepercayaan ketika membutuhkan bantuan orang sekitar untuk menyelesaikan masalah.
- 4) Bimbingan berisi nasehat dan saran yang dapat diperoleh dari orang yang dipercaya dapat memabantu ketika menyelesaikan masalah.

Sedangkan manfaat dari Social Support yaitu sebagai berikut:

- 1) Mengurangi Stress dan depresi.
- 2) Pencegah rasa keterasingan.
- 3) Meningkatkan rasa bahagia dalam diri.
- 4) Menjaga kesehatan fisik maupun psikis.
- 5) Mencegah tindakan kekerasan.

2.2 Penelitian Relevan

Adapun penelitian terdahulu yang relevansi terhadap penelitian yang akan dilakukan ialah: Jurnal dengan judul "Tingkat Resiliensi Orang Tua dalam

UNIVERSITAS MEDAN AREA

Mendampingi Anak Sekolah dari Rumah pada Masa Pandemi" oleh Nofi Nur Yuhenita (2021). Berdasarkan hasil penelitian dapat ditemui bahwa: "Penelitian ini bertujuan untuk melihat tingkat resiliensi orang tua ketika mendampingi anak menjalani sekolah dari rumah pada masa *Covid 19*. Ditemukan skor resiliensi pada sampel penelitian ini berada pada kategori rendah." Hal ini menunjukkan bahwa orang tua dalam mendampingi anak sekolah dari rumah memiliki daya resiliensi yang rendah. Tingkat resiliensi ini akan berdampak pada tingginya tingkat stres.

Penelitian tersebut menunjukkan bahwasanya orang tua yang tidak terbiasa mendampingi anak dalam belajar akan mengalami stress karena harus terbagi fokusnya dalam bekerja. Ketika orang tua mengalami hal tersebut orang tua akan meluapkan emosi marah kepada anak. Maka dari itu untuk mengantisipasi stres dalam mendampimgi anak belajar daring, diupayakan kepada orang tua untuk menguatkan daya resiliensi. Karena dengan demikian orang tua dapat dengan mudah meningkatkan kemampuan resiliensi anak dirumah.

Pada Jurnal "Dampak Pembelajaran Online Selama Pandemi Covid-19 Terhadap Resiliensi, Literasi Matematis Dan Prestasi Matematika Siswa" oleh Hardi Tambunan (2021). Dijelaskan bahwa:

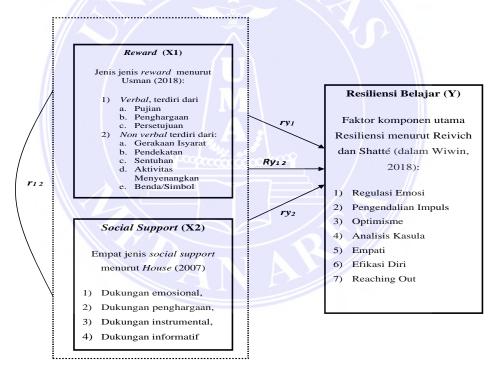
"Pandemi Covid-19 memberikan dampak yang luar biasa terhadap sektor pendidikan di Indonesia, akibatnya mempengaruhi hasil belajar siswa. Studi ini bertujuan untuk mengetahui hasil pembelajaran melalui *online* selama pandemi Covid-19 terhadap resiliensi matematis, kemampuan literasi matematis, dan prestasi matematika siswa. Hasil analisis menunjukkan bahwa resiliensi matematis, kemampuan literasi matematis, dan prestasi matematika siswa adalah kategori sedang dan tidak mencapai ketuntasan belajar. Dengan demikian, pembelajaran selama pandemi Covid-19 memberikan dampak kurang baik terhadap prestasi siswa dalam matematika."

Selain orang tua, siswa juga mengalami dampak buruk dari pandemi tersebut. Hal tersebut terjadi dikarenakan rendahnya resiliensi pada diri mereka sehingga mereka tidak mampu menghadapi setiap masalah yang ditimbulkan oleh pandemi Covid 19.

Untuk membentuk dan meningkatkan resiliensi individu dapat dilakukan dengan pemberian Reward dan Dukungan Sosial. Hal tersebut sesuai penelitian yang dilakukan oleh Chen dan Li (2019) pada siswa sekolah menengah pertama di China menemukan bahwa hadiah yang diberikan kepada siswa dapat meningkatkan motivasi belajar dan mendorong mereka untuk menjadi lebih resilien dalam menghadapi tantangan dan kesulitan.

Selain reward social support juga dapat mempengaruhi resiliensi belajar. Pernyataan tersebut sesuai dengan jurnal "Hubungan Antara Dukungan Sosial Terhadap Resiliensi Pada Mahasiswa Bidikmisi dengan Mediasi Efikasi Diri" oleh Alaiya Choiril Mufidah (2017) yang menjelaskan bahwa:

"Dukungan Sosial sangat dibutuhkan oleh siapa saja dalam hubungan bermasyarakat karena manusia diciptakan sebagai makhluk sosial. Dukungan sosial mengacu pada penerimaan rasa aman, peduli, penghargaan atau bantuan yang diterima seseorang dari oranglain. Berdasarakan hasil pengumpulan data ditemukannya terdapat hubungan positif antar dukungan sosial dengan resiliensi melalui mediasi efikasi diri. Karena semakin tinggi dukungan sosial dan efikasi diri individu maka semakin tinggi pula resiliensi individu tersebut.


Dari penjelasan tersebut dapat disimpulkan bahwasanya seseorang harus memiliki resiliensi yang tinggi agar mampu bertahan dibawah tekanan-tekanan dan mampu mengatasi masalah apapun yang dialaminya sehingga tidak merasakan stress yang tinggi. Hal tersebut dapat diatasi dengan pemberian dukungan sosial kepada mereka yang merasakan kesulitan dalam menghadapi masalah. Dan juga memberi

UNIVERSITAS MEDAN AREA

reward kepada mereka untuk memotivasi agar bangkit kembali setelah mengalami kegagalan. Resiliensi dapat dibentuk dan ditingkatkan jika kita mengetahui dampak besar dari kemampuan tersebut ketika kita mengalami suatu masalah yang membuat kita merasa gagal dalam menjalani hidup ini.

2.3 Kerangka Konseptual

Berdasarkan penjelasan di atas yang telah menjelaskan pengaruh *reward* dan *social support* terhadap resiliensi belajar Siswa Kelas XI di SMA Negeri 1 Kisaran Kabupaten Asahan, maka peneliti menampilkan kerangka konseptual:

Gambar 2.1 Bagan Kerangka Konseptual Pengaruh Reward Dan Social Support
Terhadap Resiliensi Belajar Siswa Kelas XI di SMA Negeri 1
Kisaran Kabupaten Asahan.

Gambar bagan tersebut menjelasakan bahwa ry_1 menunjukkan koefisien korelasi antara variabel bebas pertama yaitu reward guru (X_1) dan resiliensi belajar siswa Kelas XI di SMA Negeri 1 Kisaran Kabupaten Asahan yang

Document Accepted 7/6/24

^{3.} Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

merupakan varibel terikat (Y). Selanjutnya ry₂ menunjukkan koefisien korelasi antara variabel bebas kedua yaitu *social support* guru (X₂) dan variabel terikat yaitu Resiliensi belajar siswa Kelas XI di SMA Negeri 1 Kisaran Kabupaten Asahan. Kemudian ry₁₂ menunjukkan koefisien korelasi ganda antara variabel bebas yaitu *reward* dan *social support* terhadap variabel terikat resiliensi belajar. Dan r₁₂ menunjukkan koefisien korelasi antara variabel bebas *reward* dan *social support*.

2.4 Hipotesis

Hipotesis merupakan dugaan atau jawaban sementara terhadap permasalahan yang sedang diteliti. Sering terjadinya kesalahpahaman dimana analisis ilmiah berhenti pada hipotesis tanpa adanya upaya selanjutnya untuk melakukan verifikasi kebenarannya. Kecendrungan ini terdapat pada ilmuan yang sangat dipengaruhi oleh paham rasionalisme dan empirisme. Oleh karena itu maka sebelum teruji kebenarannya secara empiris semua penjelasan rasional yang diajukan statusnya hanyalah bersifat sementara atau hipotesis. Berdasarkan kerangka berpikir maka rumusan Hipotesisi yang digunakan dalam penelitian ini adalah:

- 1. Ada pengaruh postitif *reward* dan signifikan terhadap resiliensi belajar siswa Kelas XI di SMA Negeri 1 Kisaran Kabupaten Asahan.
- 2. Ada pengaruh postitif social support dan signifikan terhadap resiliensi belajar siswa Kelas XI di SMA Negeri 1 Kisaran Kabupaten Asahan.

3. Ada pengaruh postitif r*eward* dan *social support* dan signifikan terhadap Resiliensi Belajar Siswa Kelas XI di SMA Negeri 1 Kisaran Kabupaten Asahan.

BAB III

METODE PENELITIAN

3.1 Desain Penelitian

Metode penelitian yang digunakan adalah metode penelitian kuantitatif karena metode ini memberi perhatian seberapa sering suatu variabel muncul sehingga peneliti dapat melihat variabel yang lebih berpengaruh dan seberapa besar pengaruh dari masing variabel. Desain penelitian ini ialah ex post facto corelation study. Ex post facto (Neliwati, 2018) yang berarti "dari apa yang dikerjakan setelah kenyataan" penelitian ini disebut penelitian sesudah kejadian. Ex post facto digunakan untuk menemukan penyebab dari perubahan perilaku yang telah terjadi tanpa ada pemberian perlakuan kepada sampel penelitian. Dan co-relation study digunakan untuk mencari pengaruh variabel bebas terhadap variabel terikat yang menunjukkan hubungan kausalitas. Dengan kata lain peneliti tidak melakukan eksperimen untuk memanipulasi variabel Reward dan Sosial Support karena variabel tersebut telah ada sebelum penelitian dilakukan.

3.2 Tempat Dan Waktu Penelitian

Penelitian ini dilakukan di SMA Negeri 1 Kisaran Kabupaten Asahan yang beralamat di Jalan Madong Lubis No. 5 Kisaran Kota Kecamatan Kisaran Timur Kabupaten Asahan - Sumatera Utara. Penelitian ini direncanakan sejak April 2022 s/d September 2023.

3.3 Identifikasi Variabel

Menurut Syahrum (2012) variabel penelitian merupakan bentuk konkrit dari kerangka konsep yang telah disusun dan masoh memerlukan penerjemahan dalam bentuk praktis. Istilah variabel juga diartikan sebagai segala sesuatu yang akan jadi menjadi objek pengamatan penelitian. Penelitian ini terdiri atas dua variabel penelitian, yaitu sebagai berikut:

- 1. Variabel bebas, menurut Sugiyono (2018) "variabel bebas adalah variabel yang mempengaruhi atau yang menjadi sebab perubahannya atau timbulnya variabel dependen (terikat)". Ada dua variabel bebas dalam penelitian ini yaitu Reward Guru (X_1) dan Social Support Guru (X_2).
- 2. Variabel terikat, Menurut Sugiyono (2018) "variabel terikat merupakan variabel yang dipengaruhi atau yang menjadi akibat, karena adanya variabel bebas". Variabel terikat dalam penelitian ini adalah Risiliensi Belajar (Y).

3.4 Definisi Operasional

Definisi operasional (Syahrum 2014) adalah sebuah batasan yang diberikan peneliti terhadap variabel penelitiannya sendiri sehingga variabel penelitian dapat diukur. Definisi operasional (Syahrum 2014) merupakan definisi penjelas, karena akibat definisi yang diberikannya, sebuah variabel penelitian menjadi jelas. Definisi operasional tidak menimbulkan keraguan pada peneliti. Maka dari itu penelitian yang baik harus memiliki definisi operasional yang jelas. Defenisi operasional dari *Reward, Social Support*, dan Resiliensi, adalah sebagai berikut:

1) Resiliensi

Resiliensi merupakan kekuatan dan ketangguhan yang ada didalam diri manusia untuk bangkit dari pengalaman emosional yang negatif yang merupakan hasil transaksi yang dinamis antara kekuatan dari luar dengan kekuatan dari dalam individu dan berkembang sepanjang waktu. Resiliensi diungkapkan melalui faktor komponen utama Resiliensi menurut Reivich dan Shatté yaitu: 1) Regulasi Emosi, 2) Pengendalian impuls, 3) Optimisme, 4) Analisis Kasual, 5) Empati, 6) Efikasi Diri, 7) *Reaching Out*.

2) Reward

Reward adalah penguatan berupa hadiah, penghargaan atau hal menyenangkan lainnya yang bertujuan agar seseorang menjadi lebih giat melakukan pekerjaan yang terpuji dan berusaha untuk memelihara, memperbaiki, atau meningkatkan kualitas diri. Reward diungkap melalui jenis-jenis penguatan (reinforcement) menurut Usman yang (dalam Febianti, 2018) sebagai berikut: a) Penguatan verbal diutarakan dengan kata-kata pujian, penghargaan (valuation), persetujuan, dan sebagainya; b) Penguatan non verbal dilakukan dengan memberi penguatan berupa gerakan isyarat, melakukan pendekatan, memberikan sentuhan (contact), melakukan aktivitas menyenangkan, dan penguatan berupa pemberian benda/simbol.

3) Social Support

Social support adalah hubungan sosial yang berkualitas yang menimbulkan rasa nyaman, rasa disayangi, dihargai, dibantu yang akan menimbulkan perasaan positif serta mengangkat harga diri. Social support dalam penelitian ini diberikan oleh guru kepada siswa. Social support diungkap melalui jenis-jenis social support menurut House dalam Nurs (2007), yaitu: 1) Dukungan Emosi, 2) Dukungan Penghargaan, 3) Dukungan Instrumental, 4) Dukungan Informasi.

3.5 Populasi Dan Sampel

3.5.1 Populasi

Menurut Jaya (2017) "populasi adalah wilayah generalisasi yang terdiri dari objek atau subjek yang memiliki kuantitas dan karakteristik tertentu yang ditetapkan oleh peneliti yang dipelajari dan kemudian ditarik kesimpulannya". Secara singkat populasi merupakan wilayah generalisasi dari hasil penelitian yang dilakukan terhadap objek penelitian dan juga terhadap subjek penelitian. Objek penelitian merupakan sesuatu yang akan menjadi bahan fokus perhatian penelitian. Sedangkan subjek penelitian adalah sesuatu dimana objek penelitian tersebut melekat atau menjadi sumber dari objek penelitian, yang biasanya dalam penelitian pendidikan berupa peserta didik, guru, kepala sekolah, orangtua, siswa, dan semua elemen dalam pendidikan yang menghasilkan karakteristik-karakteristik yang menjadi perhartian peneliti. Jumlah populasi penelitian yang digunakan untuk meneliti pengaruh reward dan social support terhadap resiliensi

belajar siswa Kelas XI di SMA Negeri 1 Kisaran Kabupaten Asahan sebanyak 252 siswa. Berikut tabel jumlah siswa di setiap Kelas

Tabel 3.1 Jumlah Popolasi Penelitian

Kelas	Jumlah Siswa
XI IPA 1	35
XI IPA 2	35
XI IPA 3	35
XI IPA 4	37
XI IPS 1	37
XI IPS 2	37
XI IPS 3	36
Jumlah populasi	252

3.5.2 Sampel

Menurut Indra Jaya (2018) Sampel adalah sebahagian dari jumlah karakteristik yang dimiliki oleh populasi tersebut. Sampel diambil dari populasi yang mampu menggambarkan keadaan populasi tersebut. Penelitian ini memiliki populasi sebanyak 252 siswa. Menurut Arikunto (2010), "jika subjek kurang dari 100 orang sebaiknya diambil semua populasinya, sedangkan jika subjek yang diteliti lebih besar dari 100 orang dapat diambil 10-15% atau 20-25% atau lebih". Maka dari itu penentuan jumlah sampel, peneliti menggunakan rumus Slovin (Jaya, 2019), yaitu:

$$n = \frac{N}{N \cdot e^2 + 1}$$

Keterangan:

n : jumlah sampel yang dicari

N : jumlah populasi penelitian

e² : derajat kesalahan sampling yang ditentukan

Berdasarkan rumus tersebut di atas, maka perhitungannya dapat dilihat sebagai berikut ini, yaitu:

$$n = \frac{N}{N \cdot e^2 + 1}$$

$$n = \frac{252}{252 (5\%)^2 + 1}$$

$$n = \frac{252}{0,63+1}$$

$$n = \frac{252}{1,63}$$

$$n = 154,60$$

Dari perhitungan jumlah sampel diatas diperoleh sampel sebesar 154,60 yang dibulatkan menjadi 155 siswa. Dengan derajat kesalahan sampling yang digunakan adalah 5% sesuai dengan pedoman penentuan jumlah sampel penelitian ini. Pengambilan sampel dilakukan dengan cara *Probability Sampling*. Langkah utama yang harus dilakukan dalam teknik ini adalah menentukan terlebih dahulu jumlah sampel yang dibutuhkan dan diambil dari jumlah keseluruhan populasi, untuk keperluan ini peneliti mengacu pada Tabel 1 di atas, maka jumlah sampel yang akan diambil dari populasi sebanyak 155 orang. Lebih lanjut untuk menentukan berapa banyak anggota sampel yang akan diambil dari masingmasing sub-populasinya sebagaimana dikemukakan oleh Soepeno (1997:90) ditetapkan dengan menggunakan rumus:

$$Spl = \frac{n}{N} \times Js \dots$$

Keterangan:

Spl = Jumlah sampel pada tiap-tiap subpopulasi

N = Jumlah responden dalam tiap-tiap populasi

n = Jumlah responden dalam subpopulasi

Js = Jumlah sampel yang dibutuhkan

Berdasarkan rumus diatas, diperoleh proporsi sampel dari setiap Kelas dapat dilihat pada tabel berikut:

Tabel 3.2 Jumlah Sampel Penelitian

Kelas	Jumlah Siswa	Jumlah Sampel
XI IPA 1	35	22
XI IPA 2	35	22
XI IPA 3	35	21
XI IPA 4	37	23
XI IPS 1	37	23
XI IPS 2	37	23
XI IPS 3	36	-21
Jumlah	252	155

3.6 Teknik Pengambilan Sampel

Teknik pengambilan sampel ini adalah *probability sampling*. *Probability* mempunyai makna yang sama dengan peluang, kemungkinan, atau kesempatan. Menurut Indra Jaya (2018), *probability sampling* merupakan penarikan sampel, dimana semua anggota populasi punya kesempatan yang sama untuk terpilih menjadi sampel penelitian. Adapun teknik pengambilan sampel yang digunakan adalah teknik *proportional random sampling* yang dilakukan secara acak tanpa memperhatikan strata dalam populasi.

3.7 Metode Pengumpul Data

Teknik pengumpulan data yang digunakan dalam penelitian ini adalah survei kuesioner. Morrisan (2021) menjelaskan bahwa "pertanyaan yang diajukan dalam metode survei ini bersifat statis (tetap) atau sudah terstandart". Semua responden menerima pertanyaan yang sama, dan tidak akan ada kesempatan untuk mengajukan pertanyaan susulan. Dan sistem pengukuran indikator pada penelitian ini menggunakan skala likert. Pada skala likert (Morrisan 2021), peneliti harus merumuskan sejumlah pernyataan mengenai suatu topik tertentu, dan responden diminta memilih apakah ia sangat setuju, setuju, tidak setuju, dan sangat tidak setuju dengan berbagai pernyataan tersebut. setiap pilihan jawaban memiliki bobot yang berbeda. Untuk menjaga konsistensi pengukuran sikap, bobot jawaban harus disusun terbalik untuk pernyataan yang bersifat negatif.

Selain itu juga penelitian ini menggunakan teknik pengumpulan data observasi dan wawancara untuk mengetahui keadaan siswa dan proses pembelajaran yang dilakukan disekolah selama *era new normal*. Observasi dilakukan dengan cara mengamati keadaan objek dan subjek penelitian. Sedangkan teknik wawancara ini dilakukan dengan tatap muka dan bertanya kepada subjek penelitian tentang objek penelitian.

Tabel 3.3 Kisi-Kisi Skala Pemberian *Reward* Guru Terhadap Resiliensi Belajar Siswa di Kelas

No	Jenis	Indikator	Bentuk Item		Indikator Bentuk Item	
			Favorable	Unfavorable		
1	Reward Verbal	1. 1 Memberikan pujian	R1,R2	R6		
		1. 2 Memberikan penghargaan	R3, R4	R7, R8, R9		
		1. 3 Memberikan persetujuan	R5	R10		
2.	Reward Non-	2.1 Menggunakan	R11,	R23, R24		
	Verbal	gerakan isyarat	R12,			
		seperti tersenyum,	R13,R14			
		mengangguk atau menggeleng kepala, mengacungkan jempol, bertepuk tangan				
		2.2 Melakukan pendekatan	R15	R25, R26,R27		
		221/11/1	R16,	_//		
		2.3 Melakukan	R17,	R 28, R29		
		sentuhan.	R18			
			R19,			
		2.4 Memberikan	R20	R30, R31,		
		aktivitas menyenangkan	7(20	R32		
		2.5 Memberikan	R21	R33, R34,		
		benda/symbol	R22	R35		

Tabel 3.4 Penilaian Skala Pemberian *Reward* Guru Terhadap Resiliensi Belajar Siswa di Kelas

Pilhan Jawaban	Sl	Kor
_	Favorable (+)	Unfavorable (-)
Sangat Setuju	1	4
Setuju	2	3
Tidak Setuju	3	2
Sangat Tidak Setuju	4	1

Tabel 3.5 Kisi-Kisi Skala Pemberian *Social Support* Guru Terhadap Resiliensi Belajar Siswa di Kelas

No	Jenis		Indikator	Bentuk Item	
				Favorable	Unfavorable
1	Emotional Support (Dukungan Emosional)	1. 1	Guru berempati kepada siswa - Menunjukk an rasa kepedulian nya kepada siswa	SS1, SS2, SS3, SS4	SS7,SS8
			- Memberika n perhatian terhadap perasaan siswa	SS5, SS6	SS9, S10, S11
2.	Dukungan	2.1	Guru memberi	SS12	SS13
۷.	Penghargaan	2.1	persetujuan atas tindakan yang dilakukan siswa	3312	3313
3.	Instrumental Support (Dukungan Instrumental)	3.1	Bantuan	SS14,	SS19,
			langsung guru	SS15,	SS20,S21
		3.2	berupa barang Bantuan	SS16,	
			langsung guru	SS17,	7//
			berupa tindakan	S18	SS22
4	Information	4.1	Guru memberi	SS23,24	SS32
	Support (Dukungan Informasi)		nasehat		
		4.2	Guru memberi saran	SS25	SS33, S34
		4.3	Guru		
			memberikan	SS26,	SS35
			media	SS25, SS27,	2200
			pembelajaran berbasis IT	SS27, SS28,	
			0010888 11	SS.29,	
				SS30,	
				5550,	

Tabel 3.6 Penilaian Skala Pemberian Social Support Guru Terhadap Resiliensi Belajar Siswa di Kelas

Pilhan Jawaban	Sl	cor
	Favorable (+)	Unfavorable (-)
Sangat Setuju	1	4
Setuju	2	3
Tidak Setuju	3	2
Sangat Tidak Setuju	4	1

Tabel 3.7 Kisi-Kisi Skala Resiliensi Belajar Siswa

No	Faktor	Indikator	Bentuk Item	
			Favorable	Unfavorable
1	Emotion Regulation (Regulasi Emosi)	1. 1 Tenang dalam menghadapi masalah	RB1, RB2	RB4
		1. 2 Fokus Pada Permasalahan yang ada	RB3	RB5
<i>C</i> (F	Impuls Control (Pengendalian Impuls),	2.1 Mampu mengendalikan emosi negatif.	RB 6	RB8, RB9 RB10
		2.2 Mampu mengelola emosi negative	RB7	RB 11
3.	Optimism (Optimisme),	3.1 Memiliki keyakinan bahwa segala sesuatu akan menjadi baik	RB 12	RB14
		3.2 Mampu dan yakin dapat menghadapi segala sesuatu	RB13	RB15
4	Casual Analysis (Analisis Kasual),	4.1 Mampu mengidentifikasika n masalah dengan baik	RB16	RB21
		4.2 Mampu membuat solusi atas masalah yang dihadapi	RB17	RB22
		4.3 Tidak menyalahkan	RB18	RB23

 $^{1.\} Dilarang\ Mengutip\ sebagian\ atau\ seluruh\ dokumen\ ini\ tanpa\ mencantumkan\ sumber$

 $^{2.\} Pengutipan\ hanya\ untuk\ keperluan\ pendidikan,\ penelitian\ dan\ penulisan\ karya\ ilmiah$

		orang lain atas kesalahan yang telah terjadi		
		4.4 Meyakini bahwa kegagalan terjadi akibat kurangnya usaha	RB19, RB 20	RB24
5	Emphaty (Empati),	5.1 Mampu memaknai perilaku verbal dan non verbal orang lain	RB25	RB26
6	Self Efficacy (Efikasi Diri),	6.1 Memiliki keyakinan untuk sukses 6.2 Memiliki	RB27	RB29
		kemampuan untuk memecahkan masalah yang dihadapi	RB28	RB30
7	Reaching Out	7.1 Tidak malu ketika mengalami kegagalan	RB31	RB34
		7.2 Berani untuk mengoptimalkan kemampuan	RB32, RB33	RB35

Tabel 3.8 Penilaian Skala Resiliensi Belajar Siswa

Pilhan Jawaban	S	kor
	Favorable (+)	Unfavorable (-)
Sangat Setuju	1	4
Setuju	2	3
Tidak Setuju	3	2
Sangat Tidak Setuju	4	1

3.8 Validitas Alat Ukur

Validitas suatu alat ukur menunjukkan kelayakan alat ukur tersebut digunakan untuk mengukur sesuatu yang diharapkan (Setyadi, 2006). Uji coba instrumen penelitian dilakukan untuk meminimalisir kegagalan dan menghindari kegagalan total pada saat pengumpulan data (Bungin, 2013). Alat ukur diujikan

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

 $^{2.\} Pengutipan\ hanya\ untuk\ keperluan\ pendidikan,\ penelitian\ dan\ penulisan\ karya\ ilmiah$

kepada 30 siswa responden di luar sampel pada populasi penelitian ini, yaitu pada siswa Kelas X SMA Negeri 1 Kisaran. Selanjutnya data yang terkumpul kemudian ditabulasikan. Adapun pengujian validitas alat ukur dilakukan dengan mengorelasikan skor dari masing-masing item dengan skor total dengan menggunakan rumus *Pearson Product Moment*. Berikut ini adalah rumus *Pearson Product Moment* (Werang, 2015):

$$r_{xy} = \frac{N \sum XY - (\sum X)(\sum Y)}{\sqrt{\{[N \sum X^2 - (\sum X)^2][(\sum Y^2) - (\sum Y)^2]\}}}$$

Keterangan:

 r_{xy} = koefisien korelasi antara skor butir dengan skor total

X = skor item

Y = skor total

 $\sum X$ = jumlah skor item

 $\sum Y$ = jumlah skor total

n = jumlah siswa

Nilai validitas yang diperoleh selanjutnya dilakukan Uji-t untuk mengetahui keberartian koefisien korelasi antar item yang dianalisis. Adapun rumus yang digunakan untuk menghitung Uji-t adalah sebagai berikut:

$$t_{hitung} = \frac{r\sqrt{n-1}}{\sqrt{1-r^2}}$$

Keterangan:

thitung: nilai thitung

r : keofisien korelasi r_{hitung}

n : jumlah responden

UNIVERSITAS MEDAN AREA

Apabila distribusi pada tabel t untuk $\alpha=0.05$ dan derajat kebebasan (dk=n-1), maka kaidah keputusan adalah Jika $t_{hitung}>t_{tabel}$ maka butir instrumen disebut valid. Jika $t_{hitung}< t_{tabel}$ maka instrumen penelitian disebut tidak valid.

3.9 Reliabilitas Alat Ukur

Reliabilitas adalah syarat keajegan alat ukur yang dilakukan pengukuran secara berulang kali akan memberikan hasil yang konsisten (Hasan; Malhotra, dalam Werang, 2015). Adapun butir instrumen yang diikutsertakan untuk uji reliabilitas hanya butir yang valid saja. Pengujian reliabilitas alat ukur dilakukan dengan menggunakan rumus Alpha Cronbach (Hasan, dalam Werang, 2015):

$$r_i = \frac{k}{(k-1)} \left[1 - \frac{\sum Si^2}{Si^2} \right]$$

Keterangan:

r_i : koefisien korelasi *alpha*

k : banyaknya butir item

Si²: jumlah varian butir atau skor setiap item

Si² : varians varian total atau skor total

3.10 Prosedur Penelitian

Kegiatan penelitian dimulai dengan mengidentifikasikan permasalahan atau isu-isu yang penting, aktual dan menarik. Dan yang paling penting adalah manfaat yang dihasilkan bila masalah itu diteliti. Dewasa ini Seluruh Dunia sedang mengalami Pandemi Covid -19. Lebih dari 2 tahun pandemi belum berakhir bahagia. Banyak tantangan-tantangan kehidupan yang dialami masyarakat baik dari keluarga ekonomi rendah maupun tinggi. Meningkatnya

angka kematian pada saat Pendemi Covid-19 ini menyebabkan pemerintah mengeluarkan peraturan untuk menghindari kerumunan. Peraturan ini menyebabkan seluruh aspek kegiatan dilakukan secara daring dari rumah masingmasing. Kebijakan ini membuat seluruh sektor kehidupan baik pendidikan, ekonomi, kesehatan mengalami kemunduran.

Perjuangan sektor pendidikan sangatlah penting. Sebab suatu negara dapat mencapai pembangunan seutuhnya di segala bidang kehidupan melalui pendidikan. Namun, ada sejumlah permasalahan di sektor pendidikan yang perlu mendapat perhatian di masa pandemi ini. Salah satunya adalah kemampuan siswa untuk tetap belajar meski berada dalam tekanan atau mengalami stres berkepanjangan. Berbagai sumber empiris dan teoritis dikaji dan ditambahkan untuk memajukan permasalahan tersebut. untuk mengumpulkan data empiris yang dipadukan dengan wawasan teoritis yang diperoleh melalui kajian berbagai literatur yang relevan. Peneliti melihat tujuan sebagai masalah pada tahap berikut. Rumusan masalah merumuskan permasalahan yang telah ditemukan. Penyusunan masalah penelitian kuantitatif berbentuk pertanyaan yang menunjukkan dengan tepat variabel atau aspek yang berhubungan dengan bidang penelitian.

Penelitian kemudian difokuskan pada pengumpulan data sesuai dengan rumusan masalah dan hipotesis yang telah dikemukakan sebelumnya. Dalam keadaan demikian diperlukan suatu desain penelitian yang merinci tahapan penelitian, metode penelitian, metode pengumpulan data, sumber data (populasi dan sampel), serta alasan pemilihan metode tersebut. Teknik membangun dan menguji instrumen yang akan digunakan untuk pengumpulan data harus

UNIVERSITAS MEDAN AREA

diputuskan sebelum kegiatan pengumpulan data dilakukan. Data yang dikumpulkan kemudian dilakukan analisis statistik. Temuan dari analisis data merupakan kesimpulan yang belum diberi makna.

Makna dalam analisis data diwujudkan melalui interpretasi yang mengarah pada upaya mengatasi permasalahan atau menjawab pertanyaan penelitian. Pada tahap ini diajukan tentang penerimaan atau penolakan hipotesisi. Interpretasi dilakukan dengan mengkaji hubungan antar temuan yang satu dengan temuan yang lain. Kesimpulan merupakan generalisasi hasil interpretasi. Berdasarkan kesimpulan yang diperoleh maka diciptakanlah implikasi dan rekomendasi serta saran dalam pemanfaatan hasil penelitian.

Adapun tahapan-tahapan dalam melakukan dalam penelitian ini adalah:

- Menemukan permasalahan untuk menentukan topik atau judul penelitian yang akan diteliti.
- 2) Melakukan survei lapangan untuk merumuskan permasalahana penelitian yang ingin dipecahkan.
- 3) Menyusun proposal tesis.
- 4) Memberikan informasi kepada pihak sekolah tentang pelaksanaan kegiatan penelitian.
- 5) Menyusun jadwal kegiatan.
- 6) Mempersiapkan instrumen penelitian
- 7) Melakukan uji validitas dan reliabilitas terhadap 30 siswa.
- 8) Mengumpulkan data penelitian.
- 9) Tabulasi data.

- Analisis data menggunakan regresi berganda apabila data normal dan homogen, analisis data menggunakan SPSS 2022.
- 11) Uji Normalitas dan Linearitas data.
- 12) Menarik kesimpulan dan menjelaskannya dalam laporan penelitian.

3.11 Teknik Analisis Data

Tujuan dari teknik analisis data adalah untuk mengolah data penelitian sedemikian rupa sehingga menghasilkan kesimpulan berupa generalisasi yang mendukung hipotesis. Untuk menganalisis data penelitian ini menggunakan dua metode statistik, yaitu analisis statistik deskriptif dan analisis statistik inferensial.

1) Analisis Statistik Deskriptif

Statistik deskriptif (2017) adalah statistik yang digunakan untuk menganalisis data dengan cara mendeskripsikan atau memperjelas data sebagaimana yang telah dikumpulkan tanpa berusaha membuat generalisasi atau kesimpulan. Dalam penelitian ini analisis statistik deskriptif menggunakan distribusi data. Sebagai langkah awal data terlebih dahulu disusun dalam distribusi frekuensi agar lebih mudah pengelolaanya. Distribusi frekuensi merupakan suatu tabel nilai yang disusun berdarkan derajat kepentingannya, dan frekuensi kejadiannya.

1. Uji Statistik Inferensial

Statistik Inferensial menurut Jaya (2017) merupakan metode statistik yang digunakan untuk menguji data sampel dan menerapkan temuannya pada populasi. Dengan demikian, sebelum melakukan pengujian hipotesis statistik penelitian ini melakukan uji normalitas dan homogenitas terlebih dahulu terhadap datanya.

UNIVERSITAS MEDAN AREA

Perhitungan atau analisis statistik inferensial pada penelitian ini menggunakan SPSS 22.0 for windows, namun tetap akan dijelaskan rumus secara manual serta tujuan ujinya sebagai berikut:

a. Uji Normalitas

Jaya (2017) menjelaskan bahwa tujuan menguji normalitas ialah untuk mengetahui bahwa sampel berdistribusi normal atau tidak. Pengujian ini menggunakan uji *liliefors* dengan langkah-langkah, sebagai berikut:

1) Pengamatan X_1 , X_2 , ,..., X_n disajikan angka baku Z_1 , Z_2 ,..., Z_n menggunakan rumus:

$$Zi = \frac{Xi - X}{S}$$

Keterangan

 \bar{X} : Rata-rata

Simpang baku sampel

2) Setiap angka baku menggunakan distribusi normal dihitung peluang F:

$$(Zi) = P(Z Zi)$$

3) Selanjutnya dihitung proporsi yang lebih kecil atau sama dengan Zi. Jika proporsi itu menyatakan dengan S (Zi), maka:

$$\mathbf{S}\left(\mathbf{Zi}\right) = \frac{\text{banyaknya} \ Z_{1,} \ Z_{2,} \ Z_{3,}, \dots, Z_{n} \ \text{yang} \ \leq Zi}{n}$$

- 4) Menghitung F (Zi) S (Zi) kemudian ditentukan harga mutlaknya.
- 5) Menentukan harga mutlak (L_0) digunakan untuk menerima atau menolak hipotesis, selanjutnya membandingkan L_0 dengan nilai kritis yang diambil dari daftar, untuk taraf nyata $\alpha = 0.05$.

Dengan kriteria:

Jika $L_0 < L_{tabel}$, berarti sampel yang digunakan berdistribusi normal.

Jika $L_0 > L_{tabel}$, berarti sampel yang digunakan berdistribusi normal.

b. Uji Linearitas

Untuk memastikan linearitas antara variabel *reward* dengan variabel resiliensi belajar siswa, dan antara variabel *social support* dengan variebl resiliensi belajar siswa. Dengan menggunakan uji Anova memiliki tingkat kepercayaan 0,05 dapat ditentukan kelinieritasan antara variabel bebas dan terikat.

c. Uji Independensi Variabel Bebas

Sebelum melakukan analisis regresi, sangat penting untuk memahami hubungan antar variabel *reward* dan *social support*. Maka dari itu perlu dilakukan uji indenpendensi untuk mengetahui kebenaran independen satu dengan lainnya. Uji indenpendensi antar variabel bebas ini dilakukan menggunakan matrik korelasi.

d. Uji Hipotesis

Pengujian hipotesis kemudian dilakukan dengan teknik analisis korelasi parsial, korelasi sederhana, dan regresi ganda setelah persyaratan analisis diuji. Tingkat signifikansi yang digunakan untuk pengujian hipotesis adalah 95 % atau $\alpha=0.05$. Berikut penjelasan langkah-langkahnya:

1. Analisis korelasi sederhana

Analisis ini untuk menguji hubungan antara variabel bebas dan variabel terikat. Hasil perhitungan korelasi ini dimaksudkan untuk mengetahui : 1) Besarnya korelasi reward (X_1) dengan resiliensi siswa (Y), dan 2) Besarnya

UNIVERSITAS MEDAN AREA

korelasi social support (X_2) dengan resiliensi siswa (Y). Maka dari itu menentukan besaran koefisien korelasinya mengacu pada ketentuan yang dikemukakan oleh Person dalam Susetyo (2009: 124) sebagai berikut:

Tabel 3. 9 Klasifikasi Nilai Koefisien Korelasi

Klasifikasi Koefisien Korelasi	Makna Hubungan Korelasi
0,00 - 0,20	Tidak Ada Korelasi
0,21 - 0,40	Rendah atau Kurang
0,41 - 0,70	Cukup
0,71 - 0,90	Tinggi
0,91 - 1,00	Sangat Tinggi

2 Analisis korelasi berganda

Analisis ini dilakukan dengan menguji hubungan antara dua variabel bebas dan satu variabel terikat. Hasil perhitungannya untuk mengetahui besarnya korelasi reward (X_1) dan social support (X_2) secara bersama-sama dengan variabel risiliensi siswa (Y).

3. Analisis korelasi parsial

Analisis ini dilakukan untuk mengontrol salah satu variabel bebas. Hasil perhitungannya untuk mengetahui : 1) Besarnya korelasi reward (X_1) dengan risiliensi siswa (Y) ketika social support (X_2) dalam keadaan konstan, 2) Besarnya korelasi social support (X_2) dengan risiliensi siswa (Y) ketika reward (X_1) dalam keadaan konstan.

4. Analisis regresi ganda

Analisis ini dilakukan untuk mengetahui pengaruh reward (X_1) dan social support (X_2) secara bersama-sama dengan risiliensi siswa (Y). Model persamaan yang digunakan adalah :

Document Accepted 7/6/24

$$Y = \alpha + \beta 1 X_1 + \beta 1 X_2 + e$$

Keterangan:

Y = Resiliensi Siswa

 $X_1 = Reward$

 $X_2 = Social Support$

 $\alpha = Intercept$

 $\beta 1$, $\beta 2$ = Koefisien regresi X_1 , X_2

e = Variabel yang tidak diteliti (error)

Uji F digunakan dalam pengujian hipotesis. Uji F digunakan untuk menguji koefisien regresi variabel independen yang mempunyai pengaruh signifikan terhadap variabel dependen. Variabel independen tidak berpengaruh terhadap variabel dependen jika probabilitas F hitung lebih besar dari tingkat kesalahannya (α). Sebaliknya variabel independen tersebut berpengaruh terhadap variabel dependen secara simultan jika F hitung lebih kecil dari tingkat kesalahannya (α).

Nilai koefisien determinasi ganda (R2) menunjukkan persentase variabel terikat yang dijelaskan secara oleh variabel bebas. Dapat dikatakan bahwa variabel bebas bertugas menjelaskan variasi data Jika R² semakin besar atau semakin mendekati 1. Ketika variabel independen yang digunakan untuk menjelaskan perubahan variabel dependen meningkat, maka persamaan regresi yang dihasilkan menjadi lebih akurat dalam memprediksi nilai variabel dependen.

Sebaliknya, jika R² semakin kecil atau mendekati 0, variable independen menjelaskan variasi variabel dependen semakin kecil, maka dari itu persamaan regresi yang dihasilkan semakin buruk dalam memprediksi nilai variabel

dependen. Secara umum dapat dikatakan bahwa besarnya koefisien determinasi ganda (R^2) berada diantara 0 dan 1, atau $0 < R^2 < 1$.

Uji t digunakan untuk mengetahui variabel independen mana yang berpengaruh secara parsial terhadap variabel dependen. Variabel independen dikatakan berpengaruh terhadap variabel dependen dilihat dari probabilitas variabel independen dibandingkan dengan tingkat kesalahannya (α). Jika probabilitas variabel independen lebih besar daripada tingkat kesalahannya (α), maka variabel independen tidak berpengaruh terhadap variabel dependen, tetapi jika probabilitas variabel independen lebih kecil dari tingkat kesalahannya (α), maka variabel independen tersebut berpengaruh terhadap variabel dependen secara parsial.

Adapun hipotesis statistik yang diuji adalah:

- 1. $H_o: \rho_{y1} \leq 0$: tidak ada pengaruh positif *reward* terhadap resiliensi belajar siswa kelas XI SMA Negeri 1 Kabupaten Asahan.
 - $H_1: \rho_{y1}>0$: ada pengaruh positif \it{reward} terhadap resiliensi belajar siswa kelas XI SMA Negeri 1 Kabupaten Asahan.
- 2. $H_o: \rho_{y2} \leq 0$: tidak ada pengaruh positif *social support* terhadap resiliensi belajar siswa kelas XI SMA Negeri 1 Kabupaten Asahan.
 - $H_1: \rho_{y2}>0:$ ada pengaruh positif *social support* terhadap resiliensi belajar siswa kelas XI SMA Negeri 1 Kabupaten Asahan.

- 3. $H_o: \rho_{y12} \leq 0:$ tidak ada pengaruh positif *reward* dan *social support* terhadap resiliensi belajar siswa kelas XI SMA Negeri 1 Kabupaten Asahan.
 - $H_1: \rho_{y12}>0:$ ada pengaruh positif \it{reward} dan $\it{social support}$ terhadap resiliensi belajar siswa kelas XI SMA Negeri 1 Kabupaten Asahan.

BAB V

KESIMPULAN DAN SARAN

A. Kesimpulan

Berdasarkan data dan hasil analisis yang telah dipaparkan dapat ditarik disimpulkan sebagai berikut:

- 1. Hasil uji t menunjukkan bahwa reward berpengaruh positif dan signifikan terhadap resiliensi kelas dengan Terdapat pengaruh positif dan signifikan reward terhadap resiliensi siswa Kelas XI SMA Negeri 1 Kabupaten Asahan dengan t hitung (6,353) > t tabel (1,960) dan koefisien antara variabel korelasi rhitung rtabel (0,457>0,361). Maka dari itu resiliensi belajar siswa akan meningkat seiring dengan mengingkatnya reward yang diberikan guru, demikianpula sebaliknya. Pemberian reward kepada peserta didik dapat memberikan pengaruh 20 % terhadap resiliensi belajar siswa Kelas XI SMA Negeri 1 Kabupaten Asahan jika dilihat dari koefisien determinasi sebesar 0,209. Adapun reward yang diberikan berupa reward verbal dan reward non verbal.
- 2. Terdapat pengaruh positif dan signifikan social support terhadap resiliensi siswa Kelas XI SMA Negeri 1 Kabupaten Asahan Koefisien antara variabel social support (X₂) dengan resiliensi siswa Kelas XI SMA Negeri 1 Kabupaten Asahan (Y) dengan koefisien antara variabel korelasi r_{hitung}> r_{tabel} (0,562>0,361). Dan melalui uji t yang telah dilakukan diperoleh t _{hitung} (8,408) > t _{tabel} (1,960). Hal ini menunjukkan bahwa terdapat hubungan dan memberikan pengaruh positif signifikan antara variabel social support

terhadap resiliensi siswa Kelas XI SMA Negeri 1 Kabupaten Asahan. besaran ini menunjukkan keduanya tergolong memiliki hubungan cukup dengan koefisien determinasi (r^2) sebesar 0,316. Adapun koefisien determinasi ini menunjukkan bahwa *social support* memberikan pengaruh terhadap resiliensi siswa Kelas XI SMA Negeri 1 Kabupaten Asahan sebesar 0,316 x 100% = 31,6%. *Social support* yang diberikan guru berupa *emotional support*, dukungan penghargaan, *instrumental support*, *information support*.

3. Terdapat pengaruh positif dan signifikan *reward* dan *social support* secara bersama-sama terhadap resiliensi siswa Kelas XI SMA Negeri 1 Kabupaten Asahan dengan hasil analisis regresi ganda yang diperoleh ternyata F hitung = 60,568 > F tabel = 3,90 yang digunakan sebagai prediksi Resiliensi siswa. Berdasarkan analisis tersebut dapat disimpulkan bahwa *reward* dan *social support* secara bersama-sama mempunyai hubungan dan memberikan pengaruh signifikan terhadap resiliensi siswa Kelas XI SMA Negeri 1 Kabupaten Asahan sebesar 44,3 % sedangkan sisanya yakni 55,7 % berasal dari variabel lain diluar variabel penelitian ini.

B. Saran

Saran-saran yang disampaikan sehubungan dengan temuan penelitian ini adalah sebagai berikut:

 Kepala Dinas Pendidikan Kabupaten Asahan beserta jajaran yang terkait lainnya terutama dalam hal peningkatan resiliensi siswa Kelas XI SMA Negeri 1 Kabupaten Asahan disarankan memberikan perhatian khusus

UNIVERSITAS MEDAN AREA

terutama dalam kaitan meningkatkan *reward* dan *social support* dikalangan siswa dengan melibatkan dan memerintahkan para kepala sekolah maupun guru untuk melaksanakan hal ini ditempat tugasnya masing-masing.

- 2. Guru hendaknya mampu mengembangkan risiliensi siswa melalui *reward* dan *social support* dalam melaksanakan tugasnya.
- Peneliti lain, disarankan menindak lanjuti penelitian ini dengan variabelvariabel berbeda yang turut memberikan sumbangan terhadap Resiliensi Siswa Kelas XI SMA Negeri 1 Kabupaten Asahan.

DAFTAR PUSTAKA

- Aina, Musfiatin, Faktor Pelindung Resiliensi Pada Pengungsi Perempuan Korban Konflik Sara Di Rusunawa "X" Sidoarjo, Vol. 06 No. 04 (2019)
- Anandari, Dhita Septika., Hubungan Persepsi Siswa atas Dukungan Sosial Guru dengan Self-Efficacy Pelajaran Matematika pada Siswa SMA Negeri 14 Surabaya, Jurnal Psikologi Pendidikan dan Perkembangan Vol. 2 No. 83, 2013.
- Arikunto, Suharsimi. 2010 Metodologi Penelitian. Yogyakarta: Bina Aksara.
- Chen, Y, Dai, R., Yao, J., & Li, Y, Donate time or money? The determinants of donation intention in online crowdfunding. Sustainability, 11(16), 42-69 (2019)
- Djamaluddin, Ahdar. 2019. Belajar dan Pembelajaran 4 Pilar Peningkatan Kompetensi Pedagogis. Sulawesi Selatan: CV Kaaffah Learning Center.
- Fatimah, Nurul., Peran Dukungan Sosial Terhadap Reseliensi Siswa Belajar Dari Rumah Serta Implikasinya dalam Bimbingan Konseling, Pendidikan Dan Konseling, Vol. 11, NO.2, 205-217 (2021).
- Febianti, Yopi Nisa, Peningkatan Motivasi Belajar dengan Pemberian Reward and Punishment Yang Positif, Jurnal Edunomic, Vol. 6, No 2, 93-102 (2018).
- Fikri, Aiman., Reward dan Punishment dalam Perspektif Pendidikan Islam, Jurnal Pendidikan dan Kajian Islam, Vol. 1, No. 1, 1-16 (2021).
- Hendriani, Wiwin. 2018. Reseliensi Psikologi. Jakarta: Prenada Media Group.
- Jaya, Indra. 2017. Penerapan Statistik Untuk Pendidikan. Bandung: Citapustaka Media Perintis.
- Kumalasari, Dewi., Resiliensi Akademik dan Kepuasan Belajar Daring di Masa Pandemi COVID-19:Peran Mediasi Kesiapan Belajar Daring, Jurnal Psikologi Indonesia, Vol. 9, No.2, 353-368 (2020).
- Li, R., Kim, J., & Park, J., The effect of internet shoppers' trust on their purchasing intention in China. Journal of Information Systems and Technology Management. Vo;4, No.3 (2007)
- Maslihah, Sri., Studi Tentang Hubungan Dukungan Sosial, Penyesuaian Sosial Di Lingkungan Sekolah Dan Prestasi Akademik Siswa SMP IT Assyfa Boarding School Subang Jawa Barat, Jurnal Psikologi, Vol. 10, No. 2, 103-113 (2011).
- Morrisan. 2021. Metode Penelitian Survei. Jakarta: Kencana.

UNIVERSITAS MEDAN AREA

^{2.} Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah 3. Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

- Nainggolan, T. D., Pengaruh Bermain Puzzle dan Dukungan SOsial Guru Terhadap Resiliensi Anak Usia 5-6 Tahun di Pendidikan Anak Usia DIni Kenanga Raya Medan. Journal of Education, Humaniora and Social Sciences (JEHSS), Vol. 5, No. 2, 1531-1540 (2022).
- Nurs, Nursalam M. 2007 Asuhan Keperawatan pada Pasien Terinfeksi HIV AIDS. Jakarta: Salemba Medika.
- Prasetyo, Atik Heru, Analisis Dampak Pemberian Reward dan Punishment dalam Proses Pembelajaran Matematika, Jurnal Pedagogi dan Pembelajaran, Vol.2, No.3 (2019).
- Rosyid, Moh. Zaiful. 2018. Reward & Punishment Dalam Pendidikan. Malang: Literasi Nusantara.
- Saragih, A. P., Pengaruh Reward dan Punishment Guru Terhadap Resiliensi Anak Usia Dini Kelompok B di Taman Kanak Kanak Negeri Pembina Kabanjahe. Journal Of Education, Humaniora and Social Sciences (JEHSS) Vol 5 NO.2, 1079-1086(2022).
- Sitorus, Masganti. 2015. Psikologi Perkembangan Anak Usia Dini. Medan: Perdana Publishing.
- Sovitriani, Rilla. 2021. Aspek Psikologis Wanita Terlantar dan Permasalahannya, Bedah Kasus: Wanita Terlantar. Yogyakarta: Nas Media Pustaka.
- Sugiyono. 2018. Metodde Penelitian Kuantitatif, Kualitatif, dan R&D. Bandung: Alfabeta.
- Sun, Y., & Wang, S., Understanding consumers' intentions to purchase green products in the social media marketng context. Asia Pacific Journal of Marketing and Logistics, 32(4), 860–878 (2020).
- Syahrum. 2014. Metode Penelitian Kuantitatif. Bandung: Citapustaka Media.
- BIBLIOGRAPHY \1 1033 Tambunan, Hardi., Dampak Pembelajaran Online Selama Pandemi Covid-19 Terhadap Resiliensi, Literasi Matematis Dan Prestasi Matematika Siswa ." Jurnal Pendidikan Matematika Indonesia Vol. 6 Nomor 2, 70-76 (2021).
- Uchino, B.N., and Garvey, T.S., The Availability of social support reduces cardiovascular reactivity to acute psychological stress, Journal of Behavioral Medicine, 20, 01, (2017).
 - BIBLIOGRAPHY \1 1033 Yuhenita, Nofi Nur., Tingkat Resiliensi Orang Tua dalam Mendampingi Anak Sekolah dari Rumah pada Masa Pandemi, JURNAL BESICEDU VOL. 5 NO. 6, 5336-5341(2020).

UJI VALIDITAS ALAT UKUR REWARD

Pengujian validitas alat angket *reward* dilakukan menggunakan rumus korelasi *product moment*, yaitu:

$$\mathbf{r}_{xy} = \frac{(11 -) - (121)(-)}{\sqrt{\{(1 -) - (-) \}\{[1 - (-) \}\}}}$$

perhitungan menggunakan Microsoft Excel, misalnya pada korelasi aitem ke-1, maka didapat:

$$X = 89$$

$$X^{2} = 287$$

$$(X)^{2} = 7921$$

$$XY = 9564$$

$$Y^{2} = 340974$$

$$(Y)^{2} = 10010896$$

$$XY = 9564$$

$$Y = 3164$$

$$Y = 340974$$

$$Y = 340$$

Hasil perhitungan r_{xy} dibandingkan dengan harga r_{tabel} (0,361) pada tarag signifikansi 5%, apabila $r_{xy} > r_{tabel}$ dinyatakan aitem valid dan sebaliknya apabila $r_{xy} < r_{tabel}$ dinyatakan aitem tidak valid. Perhitungan untuk seluruh aitem dapat dilihat pada tabel berikut ini:

UNIVERSITAS MEDAN AREA

 $\mathbf{r}_{\mathbf{x}\mathbf{y}} =$,

TABEL UJI COBA VALIDITAS VARIABEL REWARD

	110	1																																				_
NO. URUT	, NO. Subjek	,	4	ol 6					-1 -1	al .	40	44	40	40	44	45	46		1 40	40	00	04		J 00	0.4	or!	ool		00	00	•	ابه		00	04		Υ	Y2
	SURVEY		1 .	2 3	4		0 6	- 1	/ 8	9	10	11	12		14	15	16	- 1/	18	19	20		22			25	26	2/	28	29	30	31	32		. 34	35		
1	1	2	2	4	2	3	3	3	2	2	3	3	2	3	2	3	3	3	2	3	2	3	3	2	3	3	3	3	2	3	2	3	3	3	4	3	95	9025
2	2	3	3	3	3	4	4	4	4	2	4	4	4	3	2	4	4	3	2	3	2	4	3	2	4	3	3	3	2	4	2	4	3	3	1	3	109	11881
3	3	4	4	4	1	4	3	4	3	2	4	4	2	3	2	4	3	3	2	3	2	4	3	2	4	3	4	3	2	4	2	4	3	2	2	3	106	11236
4	4	3	3	3	3	3	3	3	2	2	3	3	3	3	2	3	3	3	2	3	2	3	3	2	3	3	3	3	2	3	2	3	3	3	3	3	97	9409
5	5	4	4	4	4	4	4	4	4	5	4	4	1	4	3	4	4	4	3	4	3	4	4	3	4	4	4	4	3	4	3	4	4	4	1	4	129	16641
6	6	3	3	4	3	4	3	4	2	3	4	4	4	3	3	4	3	3	3	3	3	4	3	3	4	3	3	3	3	4	3	4	3	3	2	3	114	12996
7	7	2	2	2	2	3	4	3	4	3	3	3	3	4	3	3	4	2	3	4	3	3	4	3	3	4	4	3	3	3	3	3	4	4	3	1	108	11664
8	8	4	4	4	2	4	3	4	2	3	4	4	4	2	3	4	2	2	3	2	3	4	2	3	4	2	2	2	3	4	3	4	2	2	4	2	106	11236
9	9	2	2	2	2	3	1	3	3	3	3	3	3	3	3	3	4	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	3	101	10201
10	10	2	2	2	2	4	3	4	2	1	4	4	4	4	_1	4	4	4	1	4	11	4	4	1	4	4	4	4	1	4	1	4	4	4	3	4	107	11449
11	11	4	4	5	5	4	4	4	2	1	4	4	4	4	1	4	3	4	1	4	1	4	4	1	4	4	4	4	1	4	4	4	4	4	1	4	118	13924
12	12	3	3	3	3	2	2	1	2	2	1	1	1	2	2	1	1	2	2	2	2	1	2	2	1	2	3	2	2	1	4	4	4	4	1	2	73	5329
13	13	3	3	3	3	2	3	2	2	2	2	2	2	3	4	2	3	3	4	3	4	2	3	4	2	3	3	3	4	2	1	2	1	2	2	3	92	8464
14	14	2	2	2	2	1	4	1	2	1	1	1	1	2	1	1	2	2	1	1	1	1	2	1	1	2	2	2	3	3	2	3	3	3	4	2	65	4225
15	15	4	5	2	2	3	3	3	2	4	3	3	3	2	4	3	1	2	4	2	4	3	2	4	3	2	2	2	4	3	1	2	2	2	3	2	96	9216
16	16	3	3	3	3	4	4	4	4	2	4	4	4	4	2	4	4	4	2	4	2	4	4	2	4	4	4	4	2	4	3	2	2	2	4	4	117	13689
17	17	4	4	2	4	4	3	2	3	1	4	4	4	2	4	4	2	2	4	2	4	4	2	4	4	2	2	2	4	4	4	4	4	4	2	2	111	12321
18	18	3	3	3	2	3	3	3	3	4	3	3	3	4	4	3	3	4	4	4	4	3	4	4	3	2	4	4	4	3	2	2	2	2	4	4	113	12769
19	19	4	4	4	4	1	4	4	4	4	4	4	4	3	4	4	4	1	4	1	4	4	3	4	4	3	3	3	4	4	2	2	4	4	4	1	119	14161
20	20	3	3	3	3	4	4	4	3	2	4	4	4	4	2	4	2	4	2	4	2	4	4	2	4	4	4	4	2	4	2	3	3	1	4	4	114	12996
21	21	2	2	2	2	3	3	3	4	1	3	3	3	1	3	3	2	1	1	1	3	3	1	3	3	3	1	1	1	3	2	4	4	4	3	1	83	6889
22	22	3	1	4	4	4	4	4	3	1	4	4	4	4	4	4	4	4	4	4	4	4	4	3	4	4	4	4	4	4	3	1	1	2	4	4	122	14884
23	23	2	2	2	2	3	4	3	3	4	3	3	3	4	4	3	4	4	4	4	4	3	4	4	3	4	4	4	4	3	3	2	4	4	2	4	117	13689
24	24	2	2	2	2	4	3	4	1	2	4	4	4	1	2	4	3	1	2	1	2	4	1	2	4	3	1	1	2	4	3	2	2	2	3	1	85	7225
25	25	4	4	4	4	4	4	1	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	3	3	4	4	2	4	3	3	4	3	4	129	16641
26	26	3	3	1	3	2	4	1	4	2	1	2	3	2	2	1	4	2	2	2	2	1	2	2	3	2	2	2	2	3	4	4	4	1	3	2	83	6889
27	27	2	2	2	2	3	3	3	3	4	3	3	3	3	4	3	3	3	-4	3	4	3	3	4	3	3	3	3	4	3	4	3	3	4	3	3	109	11881
28	28	4	4	4	4	3	4	3	4	3	3	3	3	4	3	3	4	4	3	4	3	3	4	3	3	4	4	4	3	3	4	4	4	4	1	4	122	14884
29	29	1	2	2	2	3	3	3	4	3	3	3	3	3	4	3	4	3	3	3	3	3	3	3	3	3	3	3	4	3	4	3	3	4	3	3	106	11236
30	30	4	4	4	4	4	4	1	4	4	1	4	1	4	4	1	4	4	4	4	4	1	4	4	3	4	4	4	4	1	4	3	3	4	3	4	118	13924
		•		•						•					BAGIA	N PERTAM	(PERHITUN	GAN VALID	ITAS ANGKE	T DENGAN K	(ORELASI P	RODUCT MO	MEN)			,												
	N	= 3	0 3	0 30	30	30	30	30	0 30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
	Σχ	= 8	9 8	9 89	84	97	7 101	90	0 88	77	95	99	91	92	86	95	95	88	83	89	85	95	92	84	99	93	93	91	86	97	84	93	92	92	84	87	Y =	3164
	χ²	= 28	7 29	1 293	3 262	337	7 355	304	4 282	237	331	349	307	308	278	331	327	288	263	297	271	331	308	264	347	305	313	301	278	335	264	311	306	312	268	285	Y² =	340974
	ΧY	= 956	4 952	2 9634	9075	10461	1 10787	9699	9 9453	8368	10308	10745	9780	10036	9265	10308	10262	9582	8993	9733	9159	10308	10036	9037	10710	10017	10086	9928	9229	10346	8970	9770	9717	9810	8802	9474	Jumlah valid	
	r	= 0,43	4 0,30	6 0,367	0,489	0,362	2 0,365	0,32	1 0,367	0,377	0,616	0,365	0,377	0,768	0,377	0,616	0,556	0,645	0,321	0,707	0,415	0,616	0,768	0,365	0,699	0,598	0,655	0,367	0,362	0,367	0,367	0,363	0,363	0,366	0,364	0,363	Valid=	32
	r _{tabel}	= 0,36	1 0,36	1 0,36	0,361	0,361	0,361	0,36	1 0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	takvalid=	3
	status	_	IN	٧	V	V	V	IW	V	V	V	V	V	V	V	V	V	V	IW	V	V	V	٧	V	V	V	V	٧	٧	٧	٧	٧	٧	V	٧	V	total =	35

UNIVERSITAS MEDAN AREA

Document Accepted 7/6/24

© Hak Cipta Di Lindungi Undang-Undang

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

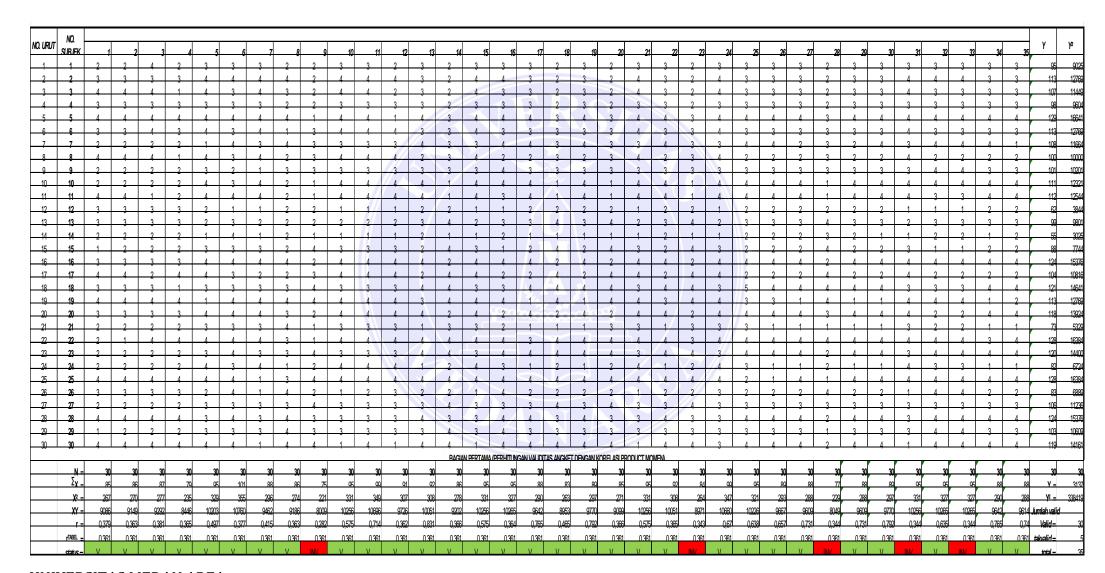
^{2.} Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah

^{3.} Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

UJI VALIDITAS ALAT UKUR SOCIAL SUPPORT

Pengujian validitas alat angket *social support* dilakukan menggunakan rumus korelasi *product moment*, yaitu:

$$\mathbf{r}_{xy} = \frac{(11 - (111)(1))}{\sqrt{\{(1 - (1))^2\}\{(1 - (1))^2\}\{(1 - (1))^2\}\}}}$$


perhitungan menggunakan Microsoft Excel, misalnya pada korelasi aitem ke-1, maka didapat:

Hasil perhitungan r_{xy} dibandingkan dengan harga r_{tabel} (0,361) pada tarag signifikansi 5%, apabila $r_{xy} > r_{tabel}$ dinyatakan aitem valid dan sebaliknya apabila $r_{xy} < r_{tabel}$ dinyatakan aitem tidak valid. Perhitungan untuk seluruh aitem dapat dilihat pada tabel berikut ini:

UNIVERSITAS MEDAN AREA

 $\mathbf{r}_{\mathbf{x}\mathbf{y}} =$,

UJI VALIDITAS SOCIAL SUPPORT

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

© Hak Cipta Di Lindungi Ondang-Ondang

1. Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

2. Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah

3. Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

UJI VALIDITAS ALAT UKUR RESILIENSI BELAJAR

Pengujian validitas alat angket resiliensi belajar dilakukan menggunakan rumus korelasi product moment, yaitu:

$$\mathbf{r}_{xy} = \frac{(111 - (1112)(-))}{\sqrt{\{(1 - 2) - (-)\}\{(1 - (-))\}}}$$

perhitungan menggunakan Microsoft Excel, misalnya pada korelasi aitem ke-1, maka didapat:

$$\begin{array}{c} X = 86 \\ X^2 = 270 \\ X^2 = 343577 \\ (X)^2 = 7396 \\ XY = 9305 \\ \end{array}$$

$$\begin{array}{c} (Y)^2 = 10017225 \\ N = 30 \\ \end{array}$$

$$\begin{array}{c} r_{xy} = \frac{(10)^{-(1)}(1)^{-(1)}}{\sqrt{\{(1,1)^{-(1)}\}^2}} \\ \end{array}$$

$$\begin{array}{c} r_{xy} = \frac{(10)^{-(1)}}{\sqrt{\{(1,1)^{-(1)}\}^2}} \\ \end{array}$$

Hasil perhitungan rxy dibandingkan dengan harga rtabel (0,361) pada tarag signifikansi 5%, apabila $r_{xy} > r_{tabel}$ dinyatakan aitem valid dan sebaliknya apabila $r_{xy} < r_{tabel}$ dinyatakan aitem tidak valid. Perhitungan untuk seluruh aitem dapat dilihat pada tabel berikut ini:

UNIVERSITAS MEDAN AREA

 $\mathbf{r}_{\mathbf{x}\mathbf{y}} =$,

^{3.} Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

UJI COBA VALIDITAS RESILIENSI BELAJAR

																Lan	ıpiran 04: U	JI COBA	VALIDITAS	RESILIEN	ISI BELAJA	.R															
NO. URUT	NO. SUBJEK			ام					اما	al	40	41	40	40	44	4F	40		40	40	20	1		1 20	n/l	orl	ac	07	20	nol	n/	~	m	n l	24	25	у уг
4		1	2	3	4	1 5	3	. /	8	9	3	2	12	13	14	15	16	17	18	4	20	21	3	23 3	24	25	26	3	28	29	30	31	32	33	34		95 9025
1	1	1	2		4	2	Ů	3	3	2	-	3	2	4	3	-	4	3		_	_	3	4	-	3	3			2	4	4	4	3	3	3	2	95 9025 122 14884
3	3	3	2	4	4	3	4	3	4	3	2	4	3	3 4	4	4	4	4	3	3	4	4	4	3	4 2	4	4	3	2 2	4	4	4	3	2	3	4	122 14884
4	4	3	3	3	3	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	2	101 10201
5	5	4	2	4	2	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	3	4	4	4	4	4	4	4	135 18225
6	6	3	3	4	4	3	2	3	3	3	4	3	3	4	3	4	4	4	3	1	4	4	4	3	4	4	4	3	3	4	4	4	3	4	3	1	117 13689
7	7	2	4	3	3	4	3	2	4	4	3	2	2	2	2	3	4	3	4	2	3	3	3	4	3	3	3	4	3	3	3	3	4	3	4	3	108 11664
8	8	2	3	4	4	3	4	2	4	3	4	4	4	4	4	4	4	4	3	4	4	4	4	2	4	4	4	2	3	4	4	4	2	4	2	2	121 14641
9	9	2	1	3	3	1	3	3	3	1	3	2	2	2	2	3	3	3	3	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	93 8649
10	10	2	3	4	4	3	4	4	3	3	4	2	2	2	2	4	3	4	2	1	4	4	4	4	4	4	4	4	1	4	4	4	4	4	4	1	114 12996
11	11	4	2	4	4	3	4	4	4	2	4	1	4	4	4	1	4	4	/1	4	4	4	4	4	4	4	4	4	1	4	4	4	4	4	4	2	121 14641
12	12	3	2	1	1	2	1	2	4	2	1	3	3	3	3	1	4	1	3	3	1	1	1	2	1	1	1	2	2	1	1	1	2	1	2	2	65 4225
13	13	3	4	2	2	4	2	3	3	4	2	3	3	3	3	2	2	2	3	3	2	2	2	3	1	2	2	3	4	2	2	2	3	2	3	4	92 8464
14	14	2	2	1	1	2	1	2	4	2	1	2	2	2	2	2	2	1	3	1	1	1	1	2	1	1	1	1	1	1	1	3	2	1	1	2	56 3136
15	15	2	2	3	3	2	3	1	3	2	3	2	2	2	2	3	3	3	2	2	3	3	3	2	3	3	3	2	4	3	3	3	2	3	2	2	89 7921
16	16	3	2	4	4	2	4	4	4	2	4	2	3	3	3	4	4	4	4	3	4	4	4	4	2	4	4	4	2	4	2	4	4	2	4	2	117 13689
17	17	4	3	4	4	3	4	2	3	3	4	4	4	4	4	4	3	4	3	1	4	4	4	2	4	4	2	2	4	3	4	3	3	3	2	3	116 13456
18	18	3	3	3	3	3	3	4	4	3	3	3	3	3	3	3	3	3	3	4	3	3	2	4	3	3	3	4	4	4	3	4	4	4	4	4	116 13456
19	19	4	4	4	4	4	4	3	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	3	4	4	4	1	4	4	4	2	4	4	1	3	129 16641
20	20	3	3	4	4	3	4	4	3	3	4	3	3	3	3	1	3	1	3	4	4	4	4	4	2	4	4	4	2	3	1	3	3	3	4	2	110 12100
21	21	2	4	3	3	4	3	1	2	4	3	2	2	2	2	3	4	3	4	4	3	3	3	1	3	3	1	1	1	4	4	4	4	4	2	4	100 10000
22	22	4	3	4	4	3	4	2	4	3	4	1	4	4	4	4	4	4	3	4	4	4	4	4	4	4	4	4	1	4	4	3	3	3	4	3	124 15376
23	23	2	2	3	3	2	3	4	3	2	3	2	2	2	2	3	3	3	3	3	3	3	1	4	3	3	3	4	4	4	1	4	4	4	1	4	100 10000
24 25	24 25	2	1	4	4	1	4	1	3	1	4	2	2	2	2 4	4	3	4	2	1	4	4	4	1	4	4	2	1	2	4	2	2	4	2	1	2	96 9216 116 13456
	26	3	2	1	2	2	2	2	4	2		3	3	3	3	2	4	4	1	4	4	4	4	4	2	4	1	2	2	3	3	3	1	1	4	4	116 13456 74 5476
26 27	20	2	2	3	3	4	3	3	3	2	3	2	2	2	2	3	4	3	3	2	3	3	3	3	3	3	4	3	4	3	4	3	3	3	3	4	74 54/6 108 11664
28	28	4	4	3	3	2	3	4	4	4	3	4	4	4	4	3	3	3	2	4	3	3	3	4	3	3	3	4	3	3	4	2	1	2	4	2	112 12544
29	29	2	3	3	3	3	3	3	3	3	3	2	2	2	2	3	3	3	1	1	3	3	3	3	3	3	3	3	3	1	4	3	2	1	3	4	93 8649
30	30	4	3	1	4	2	4	4	4	3	4	4	4	4	4	4	4	1	4	1	1	4	1	4	4	1	1	4	4	1	2	3	4	1	4	1	103 10609
	,	· ·																	TAS ANGKET	DENGAN K			VEN)	-							- ,			. ,	·		100
	N =	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30 30
	5X =	86		95	98	78				83	97	82	89	92	89	94	105	92	87	82	95	99	92		92	95	90	89	80	93	***	96	92	85	86		Y = 3165
	X² =	270		331	344	230				253	337	250	285	304	285	322	379	316	277	270	331	349	318	308	310	331	306	297	248	323	323	326	306	275	282	253	
	XY =	9305			10675	8443		-			10606	8790	9642	9949	9642	10213	11224	10137		8960	10467	10850	10151		10060	10467	9911	9644	8532	10171	10135	10297	9854	9265	9370		Jumlah valid
	r =	0,487			0,699	0,378				0,322	0,784	0,366	0,561	0,528	0,561	0,574	0,439	0,753		0,321	0,364	0,368	0,365		0,682	0,823	0,376	0,451	0,678	0,376	0,558	0,678	0,308	0,678	0,364	0,367	Valid= 30
	r _{tabel} =	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361		0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	0,361	takvalid= 5
	status =	٧	IW_	٧	V	٧	V	V	INV	IW	٧	٧	V	V	V	٧	٧	V	V	IW_	V	٧	٧	٧	٧	٧	V	٧	V	٧	٧	٧	IW	V	V	٧	total = 30

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

S Hak Cipta Di Liliduligi Olidalig-Olidali

1. Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

2. Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah

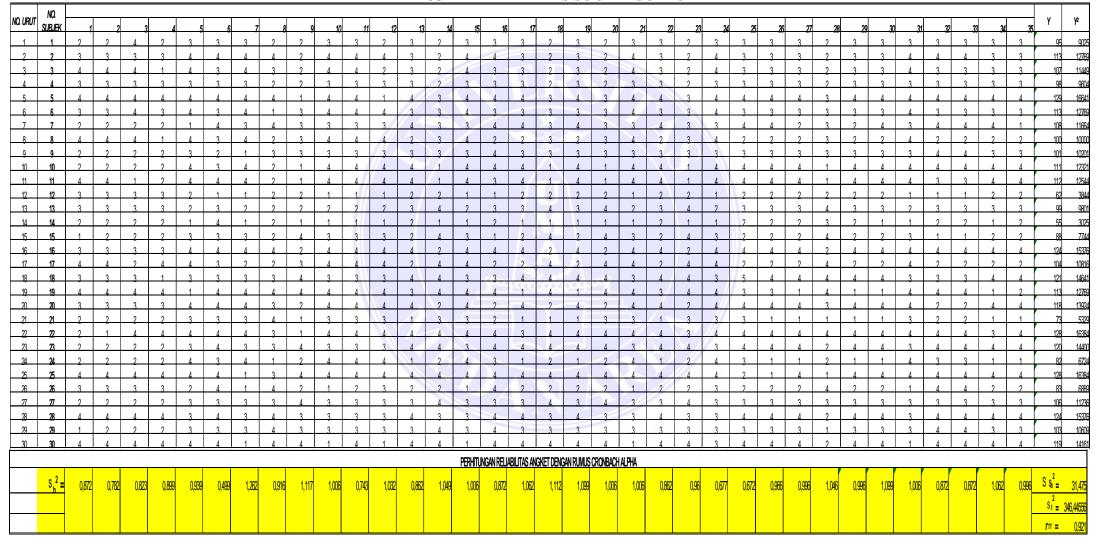
3. Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

UJI RELIABILITAS REWARD

NO. URUT	NO.																																					у уг	٦
NO. UKUI	SUBJE	ж 🗀	1	2	3	4	! ;	5 (6	7 8	3 9	10	11	12	13	14	1:	5 10	i 1	7 16	3 1	9 2	0 2	2	2 2	3 24	2	5 26	27	28	29	30	31	32	33	34	4 35	Y Y ²	
1	1	2	2	2	4	2	3	3	3	2	2	3	3	2	3	2	3	3	3	2	3	2	3	3	2	3	3	3	3	2	3	2	3	3	3	4	3	95 902	
2	2	3	3	3	3	3	4	4	4	4	2	4	4	4	3	2	4	4	3	2	3	2	4	3	2	4	3	3	3	2	4	2	4	3	3	1	3	109 1188	
3	3	4		4	4	1	4	3	4	3	2	4	4	2	3	2	4	-3	3	2	3	2	4	3	2	4	3	4	3	2	4	2	4	3	2	2	3	106 1123	
4	4	3	3	3	3	3	3	3	3	2	2	3	3	3	3	2	3	3	3	2	3	2	3	3	2	3	3	3	3	2	3	2	3	3	3	3	3	97 940	
5	5	4		4	4	4	4	4	4	4	5	4	4	1	4	3	4	4	4	3	4	3	4	4	3	4	4	4	4	3	4	3	4	4	4	1	4	129 1664	
6	6		-	3	4	3	4	3	4	2	3	4	4	4	3	3	4	3	3	3	3	3	4	3	3	4	3	3	3	3	4	3	4	3	3	2	3	114 1299	
7	7	2		2	2	2	3	4	3	4	3	3	3	3	4	3	3	4	2	3	4	3	3	4	3	3	4	4	3	3	3	3	3	4	4	3	1 1	108 1166	
8	8	4		4	4	2	4	3	4	2	3	4	4	4	2	3	4	2	2	3	2	3	4	2	3	4	2	2	2	3	4	3	4	2	2	4	2	106 1123	
9	9	2		2	2	2	3	1	3	3	3	3	3	3	3	3	3	4	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	4	3	101 1020	-
10	10	2		2	2	2	4	3	4	2	1	4	4	4	4	1	4	4	4	1	4	1	4	4	1 /	4	4	4	4	1	4	1	4	4	4	3	4	107 114	1
11	11			4	5	5	4	4	4	_	1	4	4	4	4	1	4	3	4	1	4	1	4	4	1	4	4	4	4	1	4	4	4	4	4	1	4	118 1392	
12	12			3	3	3	2	2	1	2	2	1	1	1	2	2	1	1	2	2	2	2	1	2	2	1	2	3	2	2	1	4	4	4	4	1	2	73 53	
13	13	3	-	3	3	3	2	3	2	2	2	2	2	2	3	4	2	3	3	4	3	4	2	3	4	2	3	3	3	4	2	1	2	1	2	2	3	92 846	
14	14	_		2	2	2	1	4	1	2	1	1	1	1	2	1	1	2	2	1	1	1	1	2	1	1	2	2	2	3	3	2	3	3	3	4	2	65 42	
15	15	4		5	2	2	3	3	3	2	4	3	3	3	2	4	3	1	2	4	2	4	3	2	4	3	2	2	2	4	3	1	2	2	2	3	2	96 92	
16	16		-	3	3	3	4	4	4	4	2	4	4	4	4	2	4	4	4	2	4	2	4	4	2	4	4	4	4	2	4	3	2	2	2	4	4	117 1360	
17	17	_		4	2	4	4	3	2	3	1	4	4	4	2	4	4	2	2	4	2	4	4	2	4	4	2	2	2	4	4	4	4	4	4	2	2	111 123	
18	18	3	-	3	3	2	3	3	3	3	4	3	3	3	4	4	3	3	4	4	4	4	3	4	4	3	2	4	4	4	3	2	2	2	2	4	4	113 1276	
19	19	4		4	4	4	1	4	4	4	4	4	4	4	3	4	4	4	1	4	1	4	4	3	4	4	3	3	3	4	4	2	2	4	4	4	\perp	119 1416 114 129	-
20	20	_		3	3	3	4	4	4	3	2	4	4	4	4	2	4	2	4	2	4	2	4	4	2	4	4	4	4	2	4	2	3	3	1	4	4	117 120	
21	21	2		2	2	2	3	3	3	4	1	3	3	3	1	3	3	2	1	1	1	3	3	1	3	3	3	1	1	1	3	2	4	4	4	3	11	83 688 122 1488	
22	22			1	4	4	4	4	4	3	1	4	4	4	4	4	4	4	4	4	4	4	4	4	3	4	4	4	4	4	4	3	1	1	2	4	4		
23	23	2		2	2	2	3	4	3	3	4	3	3	3	4	4	3	4	4	4	4	4	3	4	4	3	4	4	4	4	3	3	2	4	4	2	4	117 100	
24 25	24	2		2	2	2	4	3	4	1	2	4	4	4	1	2	4	3	1	2	1	2	4	1	2	4	3	1	1		4	3	2	2	2	3		85 72 129 166	
26	25 26			3	4	4		4	1	3	2	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	2	3	4	4	3	4	3	3	4	3	4	83 68	
27	27		-	2	2	3	3	3	3	3	4	3	2	3	3	2	3	3	3	2	2	2	3	2	2	3	3	2	3	2	3	4	3	3	4	3	2	109 118	
	28										3	•	-	3				3		4	_			3		3	4	4			3				·	3		122 1488	
28	-	4	-	4	4	4	3	4	3	4		3	3	3	4	3	3	4	4	3	4	3	3	4	3	3			4	3	-	4	4	4	4	1	4		
29 30	29	1		2	2	2	3	3	3	4	3	3	3	3	3	4	3	4	3	3	3	3	3	3	3	3	3	3	3	4	3	4	3	3	4	3	3	106 1123 118 1393	
30	30	4	4	4	4	4	4	4		4	4		4	I	4	4		4	4	4	4	4		4	4	3	4	4	4	4	ı	4	3	J	4	3	4	110 139/	124
																BAG	IAN KEDUA	(PERHITUN	AN RELIAE	BILITAS ANG	(ET DENGA	N RUMUS C	RONBACH A	.PHA)															
	c 2	2	0.700	0.000	0.000	0.000	0 77	n 0.40	0 44	070	1 21	1,000	0.743	4.000	0.000	1049	4.00	0.07	0.00	6 4.44	100	400	1,000	0.00	0.9	0.077	٨٤٠	0.000	0.000	4.040	0.740	0.00	0.757	0.796	0,000	100	100	S §2 = 30.54	AC.
	S _b ²		0,766	0,899	0,966	0,893	0,77	9 0,49	9 I, I.	33 0,799	1,51	1,000	0,743	1,032	0,862	1,048	1,000	0,872	0,99	6 1,112	1,09	1,00	6 1,006	0,862	2 0,9	0,677	0,557	0,823	0,832	1,049	U,/1Z	U,96	0,757	0,790	0,996	1,093	1,09	S § ² = 30,54	10
																																						S _t ² = 242,5822	<u>22</u>
																																						r ₄₁ = 0,839116	66

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang


Tak cipta bi bilidaligi olidalig olidali

1. Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

2. Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah

3. Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

UJI RELIABILITAS SOCIAL SUPPORT

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

.....

1. Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

2. Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah

3. Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

UJI RELIABILITAS RESILIENSI BELAJAR

	٨	VO.																																					
NO. UR		RIFK	1	2	3		4	5	6	7	8	Q 1	10 11	12	13	14	1	5 1/	5 1	7 18	10	20	21	2	23	24	25	26	27	28	20	30) 3	1 3	2 33	34	35	Y	γz
1		1	1	2	3	4	1	3	1	3		3	2	2	4	2	3	4	3	2	4	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	2	95	9025
2		2	3	2	4	4	2	4	3	4	2	4	3	3	3	3	4	4	4	4	4	4	4	4	3	4	4	4	3	2	4	4	4	3	4	3	4	122	14884
3		3	4	3	4	4	3	4	3	4	3	2	4	4	4	4	4	4	4	3	3	4	4	4	3	2	4	4	3	2	4	4	4	3	2	3	4	122	14884
4		4	3	3	3	3	1	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	3	3	3	3	3	3	2	101	10201
5		5	4	2	4	2	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	3	4	4	4	4	4	4	4	135	18225
6		6	3	3	4	4	3	2	3	3	3	4	3	3	4	3	4	4	4	3	1	4	4	4	3	4	4	4	3	3	4	4	4	3	4	3	1	117	13689
7		7	2	4	3	3	4	3	2	4	4	3	2	2	2	2	3	4	3	4	2	3	3	3	4	3	3	3	4	3	3	3	3	4	3	4	3	108	11664
. 8		8	2	3	4	4	3	4	2	4	3	4	4	4	4	4	4	4	4	3	4	4	4	4	2	4	4	4	2	3	4	4	4	2	4	2	2	121	14641
q		9	2	1	3	3	1	3	3	3	1	3	2	2	2	2	3	3	3	3	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	93	8649
10		10	2	3	4	4	3	4	4	3	3	4	2	2	2	2	4	3	4	2	1	4	4	4	4	4	4	4	4	1	4	4	4	4	4	4	1	114	12996
- 11		11	4	2	4	4	3	4	4	4	2	4	1	4	4	4	1	4	4	1	4	4	4	4	4	4	4	4	4	1	4	4	4	4	4	4	2	121	14641
12		12	3	2	1	1	2	1	2	4	2	1	3	3	3	3	1	4	1	3	3	1	1	1	2	1	1	1	2	2	1	1	1	2	1	2	2	65	4225
13		13	3	4	2	2	4	2	3	3	4	2	3	3	3	3	2	2	2	3	3	2	2	2	3	1	2	2	3	4	2	2	2	3	2	3	4	92	8464
14		14	2	2	1	1	2	1	2	4	2	1	2	2	2	2	2	2	1	3	1	1	1	1	2	1	1	1	1	1	1	1	3	2	1	1	2	56	3136
15		15	2	2	3	3	2	3	1	3	2	3	2	2	2	2	3	3	3	2	2	3	3	3	2	3	3	3	2	4	3	3	3	2	3	2	2	89	7921
16		16	3	2	4	4	2	4	4	4	2	4	2	3	3	3	4	4	4	4	3	4	4	4	4	2	4	4	4	2	4	2	4	4	2	4	2	117	13689
17		17	4	3	4	4	3	4	2	3	3	4	4	4	4	4	4	3	4	3	1	4	4	4	2	4	4	2	2	4	3	4	3	3	3	2	3	116	13456
18		18	3	3	3	3	3	3	4	4	3	3	3	3	3	3	3	3	3	3	4	3	3	2	4	3	3	3	4	4	4	3	4	4	4	4	4	116	13456
19		19	4	4	4	4	4	4	3	4	4	4	4	4	4	4	4	-4	4	4	4	-40	4	4	3	4	4	4	1	4	4	4	2	4	4	1	3	129	16641
20		20	3	3	4	4	3	4	4	3	3	4	3	3	3	3	1	3	71	3	4	4	4	4	4	2	4	4	4	2	3	1	3	3	3	4	2	110	12100
21	:	21	2	4	3	3	4	3	1	2	4	3	2	2	2	2	3	4	3	4	4	3	3	3	1	3	3	1	1	1	4	4	4	4	4	2	4	100	10000
22		22	4	3	4	4	3	4	2	4	3	4	1	4	4	4	4	4	4	3	4	4	4	4	4	4	4	4	4	1	4	4	3	3_	3	4	_3	124	15376
23		23	2	2	3	3	2	3	4	3	2	3	2	2	2	2	3	3	3	3	3	3	3	1	4	3	3	3	4	4	4	1	4	4	4	1	4	100	10000
24	:	24	2	1	4	4	1	4	1	3	1	4	2	2	2	2	4	3	4	2	1	4	4	4	1	4	4	4	1	2	4	4	4	4	2	1	_2	96	9216
25		25	4	2	4	4	2	4	4	4	2	4	4	4	4	4	4	4	4	1	4	4	4	4	4	4	4	2	4	4	1	2	2	1	1	4	4	116	13456
26		26	3	2	1	2	2	2	2	2	2	2	3	3	3	3	2	4	1	3	1	_1	2	1	2	2	1	1	2	2	3	3	3	3_	3	1	_1_	74	5476
27	:	27	2	4	3	3	4	3	3	3	4	3	2	2	2	2	3	4	3	4	2	3	3	3	3	3	3	4	3	4	3	4	3	3	3	3	4	108	11664
28		28	4	4	3	3	2	3	4	4	4	3	4	4	4	4	3	3	3	2	4	3	3	3	4	3	3	3	4	3	3	4	2	1	2	4	2	112	12544
29		29	2	3	3	3	3	3	3	3	3	3	2	2	2	2	3	3	3	1	1	3	3	3	3	3	3	3	3	3	1	4	3	2	1	3	4	93	8649
30		30	4	3	1	4	2	4	4	4	3	4	4	4	4	4	4	4	1	4	1	1	4	1	4	4	1	1	4	4	1	2	3	4	1	4	_1_	103	10609
																BAG	IAN KEDI IA	(PERHITI IN	GAN REI IA	BILITAS ANG	(FT DENGAN	RUMUSCR	ONBACH AI	PHA)															
		. 2																										/				/	7	7	1	7		0.2	
	,	S _b ² =	0,782	0,743	1,006	0,79	6 0,90	0,77	79 1,0	72 0,37	79 0,77	79 0,77	79 0,862	0,699	0,729	0,699	0,91	6 0,38	3 1,12	9 0,823	1,529	1,006	0,743	1,196	0,862	0,929	1,006	1,2	1,099	1,156	1,157	1,157	7 0,62	7 0,79	6 1,139	1,182	1,143	\$ \$ ₀ =	30,387
																																						s. ²	322,31667
																																					-	₹ =	322,3100/
																																						ľ11 =	0.901

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

.....

1. Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

2. Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah

3. Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

SEBARAN DATA PENELITIAN

Nomor Urut Sampel	$\begin{array}{c} Reward \\ (X_1) \end{array}$	Social Support (X ₂)	Resiliensi Siswa (Y)
1	58	71	73
2	110	108	99
3	114	74	101
4	84	56	73
5	116	74	115
6	108	101	107
7	97	70	79
8	94	85	79
9	99	108	81
10	115	85	74
11	126	116	106
12	99	87	115
13	121	90	81
14	82	109	86
15	124	83	99
16	78	60	77
17	114	79	112
18	60	69	70
19	58	67	61
20	116	117	119
21	79	108	110
22	109	112	112
23	87	106	113
24	99	115	115
25	115	79	81
26	60	109	109
27	83	65	98
28	82	116	106
29	114	75	115
30	120	74	86
31	122	82	99
32	125	110	110
33	71	71	98
34	100	68	74
35	109	101	110

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

^{2.} Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah

36	65	75	72
37	69	109	106
38	118	80	91
39	69	76	71
40	108	65	90
41	69	67	87
42	69	100	97
43	70	66	71
44	70	75	63
45	70	112	93
46	65	106	98
47	89	116	115
48	71	80	81
49	108	76	98
50	72	110	87
51	116	101	102
52	73	78	77
53	74	59	79
54	89	102	87
55	89	110	88
56	89	112	94
57	99	89	74
58	91	80	79
59	110	110	93
60	113	78	88
61	78	77	75
62	78	66	69
63	124	101	87
64	113	83	77
65	113	78	70
66	99	76	73
67	99	83	70
68	92	77	91
69	85	82	73
70	97	57	75
71	70	104	103
72	105	105	102
73	72	80	97
74	73	83	74
75	73	84	76
76	74	89	72

© Hak Cipta Di Lindungi Undang-Undang

77	89	85	92
78	113	84	106
79	76	111	83
80	76	87	81
81	76	101	89
82	119	116	115
83	91	87	95
84	92	87	72
85	94	89	73
86	77	66	72
87	77	88	76
88	77	88	95
89	77	89	76
90	78	87	90
91	100	91	78
92	79	85	90
93	79	106	104
94	89	87	90
95	91	89	76
96	76	73	70
97	76	112	101
98	95	89	81
99	75	90	87
100	74	89	90
101	74	89	80
102	75	111	110
103	114	104	112
104	115	105	113
105	126	106	114
106	92	59	83
107	89	88	87
108	95	86	86
109	79	95	85
110	97	82	72
111	118	107	103
112	100	101	94
113	78	86	90
114	58	89	72
115	118	100	110
116	80	105	83
117	80	90	75

© Hak Cipta Di Lindungi Undang-Undang

Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber
 Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

118	81	97	84
119	81	74	77
120	82	85	75
121	83	111	85
122	83	90	70
123	91	60	89
124	84	90	78
125	110	97	101
126	85	100	78
127	86	102	80
128	86	88	73
129	87	97	74
130	84	97	83
131	87	98	84
132	87	98	80
133	86	98	87
134	85	98	85
135	105	105	102
136	115	90	85
137	97	96	92
138	93	93	93
139	91	91	91
140	90	90	90
141	100	98	110
142	95	95	95
143	97	97	97
144	93	93	93
145	90	90	90
146	98	98	98
147	101	101	101
148	105	102	105
149	109	108	105
150	110	106	106
151	102	103	107
152	102	102	102
153	104	104	104
154	106	105	102
155	109	105	110

© Hak Cipta Di Lindungi Undang-Undang

Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber
 Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

ANALISIS DESKRIPTIF DATA

1 Analisis Deskriptif Variabel Reward

Distribusi frekuensi

Banyaknya Kelas (k) =
$$1 + 3.3 \log 155$$

= 8.22

Panjang Kelas (p) =
$$\frac{68}{8}$$
 =8,5≈ 9 (dibulatkan)

Daftar distribusi frekuensi variabel reward

No.	Kela	s In	terval	Frekuensi
1	58	-	67	7
2	68	+3	77	30
3	78	0	87	32
4	88	-	97	29/
5	98	-	107	19
6	108	•	117	26
7	118	Ã	127	12
	Σ			155

$$b = 78-0.5 = 77.5$$

$$b_1 = 32 - 30 = 2$$

$$b_2 = 32 - 29 = 3$$

Mean

3. Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

$$\overline{X} = \frac{\sum x_1}{n} = \frac{14232}{155} = 91,80$$

UNIVERSITAS MEDAN AREA

Modus

$$Mo = b + p \left(\frac{b_1}{b_1 + b_2}\right) = 77,5 + 9 \left(\frac{2}{2+3}\right) = 81,1$$

Median

$$M_e = b + p \left(\frac{\frac{1}{2}n - F}{f}\right) = 77.5 + 9 \left(\frac{\frac{1}{2}155 - 37}{32}\right) = 77.5 + 9 \left(1.26\right) = 88.89$$

B. Analisis Deskriptif Variabel Social Support

Distribusi frekuensi

Rentang (r) = Data terbesar – data terkecil
=
$$117 - 56$$

= 61
Banyaknya Kelas (k) = $1 + 3.3 \log 155$
= 8.22
Panjang Kelas (p) = $\frac{61}{8} = 7.62 \approx 8$ (dibulatkan)

Daftar distribusi frekuensi variable social support

No.	Kela	as Int	erval	Frekuensi
1	56		64	6
2	65	4-//	73	13
3	74		82	24
4	83	-	91	42
5	92	-	100	29
6	101	-	109	24
7	110	-	118	17
		Σ		155

$$b = 83 - 0.5 = 82.5$$

$$b_1 = 42-24 = 18$$

$$b_2 = 42-29 = 13$$

UNIVERSITAS MEDAN AREA

Mean

$$\overline{X} = \frac{\sum x_1}{n} = \frac{14088}{155} = 90,89$$

Modus

$$Mo = b + p\left(\frac{b_1}{b_1 + b_2}\right) = 82.5 + 8\left(\frac{18}{18 + 13}\right) = 87.14$$

Median

$$M_e = b + p \left(\frac{\frac{1}{2}n - F}{f}\right) = 82,5 + 8 \left(\frac{\frac{1}{2}155 - 43}{42}\right) = 82,5 + 8(0,821) = 89,07$$

C. Analisis Deskriptif Variabel Resiliensi Siswa

Distribusi frekuensi

Rentang (r) = Data terbesar – data terkecil
=
$$119 - 61$$

= 58
Banyaknya Kelas (k) = $1 + 3.3 \log 155$
= 8.22
Panjang Kelas (p) = $\frac{58}{8} = 7.25 \approx 7$ (dibulatkan)

Daftar distribusi frekuensi variable risiliensi siswa

No.	Kela	as Into	erval	Frekuensi
1	61		68	2
2	69	-	76	33
3	77	-	84	31
4	85	-	92	27
5	93	-	100	22
6	101	-	108	20
7	109	-	116	19
8	117	-	124	1
	,	Σ		155

UNIVERSITAS MEDAN AREA

⁻⁻⁻⁻⁻

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

$$b = 69-0.5 = 68.5$$

$$b_1 = 33-2 = 31$$

$$b_2 = 33-27 = 6$$

Mean

$$\overline{X} = \frac{\sum x_1}{n} = \frac{13920}{155} = 89,81$$

Modus

$$Mo = b + p\left(\frac{b_1}{b_1 + b_2}\right) = 68.5 + 7\left(\frac{31}{31 + 2}\right) = 74.31$$

Median

$$M_e = b + p \left(\frac{\frac{1}{2}n - F}{f}\right) = 68.5 + 7 \left(\frac{\frac{1}{2}155 - 2}{26}\right) = 80.5 + 6(2.90) = 88.82$$

1. Uji Kecenderungan Variabel Reward (X₁)

Pengujian kecenderungan variabel Reward (X₁) sebagai berikut:

(Mi + 1,5 SDi) sampai dengan ke atas = tinggi

(Mi) sampai dengan (M + 1.5 SDi) = sedang

(Mi - 1,5 SDi) sampai dengan (Mi) = kurang

(Mi - 1,5 SDi) sampai dengan kebawah = rendah

Harga:

$$Mi = \frac{126 + 58}{2} = 92$$

$$SDi = \frac{126 - 58}{7} = 9.7$$

Sehingga diperoleh:

Kategori tinggi

(Mi + 1,5 SDi) sampai dengan keatas

$$= 92 + 1.5 \times 9.7$$

$$= \ge 106,5$$

Kategori sedang

(Mi) sampai dengan (Mi + 1,5 SDi)

$$= 92 - 105$$

$$= 92 - 105$$

• Kategori kurang

(Mi - 1,5 SDi) sampai dengan (Mi)

= 92 - 1,5 x 9,7 sampai 92

$$= 77.45 - 91.5$$

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

• Kategori rendah

(Mi - 1,5 SDi) sampai dengan kebawah

$$= 92 - 1.5 \times 9.7$$

$$= \le 77,45$$

2. Uji Kecenderungan Variabel Social Support (X2)

Pengujian kecenderungan variabel social suppord (X_2) digunakan uji kecenderungan sebagai berikut:

(Mi + 1,5 SDi) sampai dengan ke atas = tinggi

(Mi) sampai dengan (M + 1,5 SDi) = sedang

(Mi - 1,5 SDi) sampai dengan (Mi) = kurang

(Mi - 1,5 SDi) sampai dengan kebawah = rendah

Harga:

$$Mi = \frac{117 + 56}{2} = 86$$

$$SDi = \frac{117 - 56}{8} = 7,6$$

Sehingga diperoleh:

· Kategori tinggi

(Mi + 1,5 SDi) sampai dengan keatas

$$= 86 + 1.5 \times 7.6$$

$$= 97.4$$

$$= \geq 98$$

UNIVERSITAS MEDAN AREA

Kategori sedang

(Mi) sampai dengan (Mi + 1,5 SDi)

$$= 86 - 97$$

· Kategori kurang

(Mi - 1,5 SDi) sampai dengan (Mi)

$$= 75 - 86$$

• Kategori rendah

(Mi - 1,5 SDi) sampai dengan kebawah

$$= 86 - 1.5 \times 7.6$$

3. Uji Kecenderungan Variabel Resiliensi Siswa (Y)

Pengujian kecenderungan variabel resiliensi siswa (Y) digunakan uji kecenderungan sebagai berikut:

(Mi + 1,5 SDi) sampai dengan ke atas = tinggi

(Mi) sampai dengan (M + 1,5 SDi) = sedang

(Mi - 1,5 SDi) sampai dengan (Mi) = kurang

(Mi - 1,5 SDi) sampai dengan kebawah = rendah

Harga:

$$Mi = \frac{119 + 61}{2} = 90$$

$$SDi = \frac{119 - 61}{8} = 7,25$$

Sehingga diperoleh:

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

• Kategori tinggi

(Mi + 1,5 SDi) sampai dengan keatas

$$= 90 + 1.5 \times 7.25$$

$$= \ge 100,9$$

· Kategori sedang

(Mi) sampai dengan (Mi + 1,5 SDi)

$$= 90 - 99$$

• Kategori kurang

(Mi - 1,5 SDi) sampai dengan (Mi)

$$= 79 - 89$$

Kategori rendah

(Mi - 1,5 SDi) sampai dengan kebawah

$$= 90 - 1.5 \times 7.25$$
 kebawah

$$= \le 78$$

UJI PERSYARATAN NORMALITAS

A. Uji Persyaratan Normalitas Galat Taksiran Regresi Y atas X1

Pengujian Normalitas dilakukan dengan menggunakan uji Liliefors dengan Persamaan Regresi Y atas X_1 adalah $Y=55{,}280+0{,}376\ X_1$

Perhitungan Galat Taksiran Model Regresi Y atas X1

No.	Y	X1	Y	Y-Y	f.yi	Zi	F(Zi)	S(Zi)	F(Zi)-S(Zi)
1	73	58	77,088	4,088	-31,16	-2,50	0,0062	0,006	0,000
2	99	110	96,64	-2,36	-26,52	-2,13	0,0166	0,013	0,004
3	101	114	98,144	-2,856	-26,256	-2,11	0,0174	0,019	0,002
4	73	84	86,864	13,864	-25,016	-2,01	0,0222	0,026	0,004
5	115	116	98,896	-16,104	-25,008	-2,01	0,0222	0,032	0,010
6	107	108	95,888	-11,112	-24,776	-1,99	0,0233	0,039	0,015
7	79	97	91,752	12,752	-22,496	-1,81	0,0351	0,045	0,010
8	79	94	90,624	11,624	-22,496	-1,81	0,0351	0,052	0,017
9	81	99	92,504	11,504	-21,4	-1,72	0,0427	0,058	0,015
10	74	115	98,52	24,52	-20,104	-1,61	0,0537	0,065	0,011
11	106	126	102,656	-3,344	-19,888	-1,60	0,0548	0,071	0,016
12	115	99	92,504	-22,496	-19,016	-1,53	0,063	0,077	0,014
13	81	121	100,776	19,776	-18,28	-1,47	0,0708	0,084	0,013
14	86	82	86,112	0,112	-17,144	-1,38	0,0838	0,090	0,007
15	99	124	101,904	2,904	-17,12	-1,37	0,0853	0,097	0,011
16	77	78	84,608	7,608	-16,856	-1,35	0,0885	0,103	0,015
17	112	114	98,144	-13,856	-16,104	-1,29	0,0985	0,110	0,011
18	70	60	77,84	7,84	-16,024	-1,29	0,0985	0,116	0,018
19	61	58	77,088	16,088	-15,776	-1,27	0,102	0,123	0,021
20	119	116	98,896	-20,104	-15,736	-1,26	0,1038	0,129	0,025
21	110	79	84,984	-25,016	-14,976	-1,20	0,1151	0,135	0,020
22	112	109	96,264	-15,736	-14,648	-1,18	0,119	0,142	0,023
23	113	87	87,992	-25,008	-14,48	-1,16	0,123	0,148	0,025
24	115	99	92,504	-22,496	-13,856	-1,11	0,1335	0,155	0,021
25	81	115	98,52	17,52	-13,856	-1,11	0,1335	0,161	0,028
26	109	60	77,84	-31,16	-13,736	-1,10	0,1357	0,168	0,032
27	98	83	86,488	-11,512	-13,736	-1,10	0,1357	0,174	0,038
28	106	82	86,112	-19,888	-13,368	-1,07	0,1423	0,181	0,038
29	115	114	98,144	-16,856	-11,512	-0,92	0,1788	0,187	0,008
30	86	120	100,4	14,4	-11,4	-0,92	0,1788	0,194	0,015
31	99	122	101,152	2,152	-11,344	-0,91	0,1814	0,200	0,019
32	110	125	102,28	-7,72	-11,112	-0,89	0,1867	0,206	0,020
33	98	71	81,976	-16,024	-10,768	-0,86	0,1949	0,213	0,018
34	74	100	92,88	18,88	-10,352	-0,83	0,2033	0,219	0,016
35	110	109	96,264	-13,736	-10,24	-0,82	0,2061	0,226	0,020
36	72	65	79,72	7,72	-9,616	-0,77	0,2206	0,232	0,012
1								1	L

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

^{2.} Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah

^{3.} Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

37	106	69	81,224	-24,776	-9,36	-0,75	0,2266	0,239	0,012
38	91	118	99,648			-0,73		· ·	·
		ļ	· ·	8,648	-8,736	*	0,242	0,245	0,003
39	71	69	81,224	10,224	-8,368	-0,67	0,2514	0,252	0,000
40	90	108	95,888	5,888	-8,232	-0,66	0,2546	0,258	0,003
41	87	69	81,224	-5,776	-7,744	-0,62	0,2676	0,265	0,003
42	97	69	81,224	-15,776	-7,72	-0,62	0,2676	0,271	0,003
43	71	70	81,6	10,6	-7,24	-0,58	0,281	0,277	0,004
44	63	70	81,6	18,6	-7,24	-0,58	0,281	0,284	0,003
45	93	70	81,6	-11,4	-6,896	-0,55	0,2912	0,290	0,001
46	98	65	79,72	-18,28	-6,864	-0,55	0,2912	0,297	0,006
47	115	89	88,744	-26,256	-5,872	-0,47	0,3192	0,303	0,016
48	81	71	81,976	0,976	-5,776	-0,46	0,3228	0,310	0,013
49	98	108	95,888	-2,112	-5,504	-0,44	0,33	0,316	0,014
50	87	72	82,352	-4,648	-5,392	-0,43	0,3336	0,323	0,011
51	102	116	98,896	-3,104	-5,392	-0,43	0,3336	0,329	0,005
52	77	73	82,728	5,728	-5,256	-0,42	0,3372	0,335	0,002
53	79	74	83,104	4,104	-5,248	-0,42	0,3372	0,342	0,005
54	87	89	88,744	1,744	-5,144	-0,41	0,3409	0,348	0,007
55	88	89	88,744	0,744	-5,016	-0,40	0,3446	0,355	0,010
56	94	89	88,744	-5,256	-4,648	-0,37	0,3557	0,361	0,006
57	74	99	92,504	18,504	-4,36	-0,35	0,3632	0,368	0,005
58	79	91	89,496	10,496	-4	-0,32	0,3745	0,374	0,000
59	93	110	96,64	3,64	-3,52	-0,28	0,3897	0,381	0,009
60	88	113	97,768	9,768	-3,352	-0,27	0,3936	0,387	0,007
61	75	78	84,608	9,608	-3,344	-0,27	0,3936	0,394	0,000
62	69	78	84,608	15,608	-3,256	-0,26	0,3974	0,400	0,003
63	87	124	101,904	14,904	-3,104	-0,25	0,4013	0,406	0,005
64	77	113	97,768	20,768	-2,856	-0,23	0,409	0,413	0,004
65	70	113	97,768	27,768	-2,752	-0,22	0,4129	0,419	0,006
66	73	99	92,504	19,504	-2,752	-0,22	0,4129	0,426	0,013
67	70	99	92,504	22,504	-2,36	-0,19	0,4247	0,432	0,008
68	91	92	89,872	-1,128	-2,112	-0,17	0,4325	0,439	0,006
69	73	85	87,24	14,24	-1,504	-0,12	0,4522	0,445	0,007
70	75	97	91,752	16,752	-1,256	-0,10	0,4602	0,452	0,009
71	103	70	81,6	-21,4	-1,128	-0,09	0,4641	0,458	0,006
72	102	105	94,76	-7,24	-1,12	-0,09	0,4641	0,465	0,000
73	97	72	82,352	-14,648	-0,88	-0,07	0,4721	0,471	0,001
74	74	73	82,728	8,728	-0,88	-0,07	0,4721	0,477	0,005
75	76	73	82,728	6,728	-0,248	-0,02	0,492	0,484	0,008
76	72	74	83,104	11,104	-0,016	0,00	0,5	0,490	0,010
77	92	89	88,744	-3,256	0,112	0,01	0,504	0,497	0,007
78	106	113	97,768	-8,232	0,496	0,04	0,516	0,503	0,013
79	83	76	83,856	0,856	0,616	0,05	0,5199	0,510	0,010
80	81	76	83,856	2,856	0,744	0,06	0,5239	0,516	0,008
81	89	76	83,856	-5,144	0,856	0,07	0,5279	0,523	0,005
82	115	119	100,024	-14,976	0,976	0,08	0,5319	0,529	0,003
83	95	91	89,496	-5,504	1,488	0,12	0,5478	0,535	0,012
84	72	92	89,872	17,872	1,736	0,14	0,5557	0,542	0,014
85	73	94	90,624	17,624	1,744	0,14	0,5557	0,548	0,007
86	72	77	84,232	12,232	1,744	0,14	0,5557	0,555	0,001
			,	,	,,	- , .	,	, -	,

© Hak Cipta Di Lindungi Undang-Undang

 $^{1.\} Dilarang\ Mengutip\ sebagian\ atau\ seluruh\ dokumen\ ini\ tanpa\ mencantumkan\ sumber$

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

87	76	77	84,232	8,232	2,152	0,17	0,5675	0,561	0,006
88	95	77	84,232	-10,768	2,132	0,17	0,5673	0,568	0,004
89	76	77	84,232	8,232	2,24	0,18	0,5714	0,508	0,004
90	90	78	84,608	-5,392	2,856	0,13	0,5733	0,574	0,001
91	78	100	92,88	14,88	2,904	0,23	0,591	0,581	0,010
92	90	79	84,984	-5,016	3,104	0,25	0,591	0,587	0,004
93	104	79	84,984	-19,016	3,104	0,23	0,3987	0,594	0,003
93	90	89	88,744	-1,256	3,864	0,29	0,6217	0,606	0,014
95	76	91	89,496	13,496	3,992	0,31	0,6217	0,613	0,013
96	70	76	83,856	13,490	4,088	0,32	0,6293	0,619	0,013
97		76		-17,144		0,33		0,619	0,010
98	101 81	95	83,856 91	10	4,104	0,33	0,6293	0,632	0,003
98	87	75	83,48	-3,52	5,088	0,40	0,6554 0,6591	0,632	0,023
100	90	74	83,104			0,41	0,6391	0,639	0,020
100	80	74	83,104	-6,896 3,104	5,728 5,888	0,46	0,6772	0,652	0,032
101	110	75	83,48	-26,52	6,728	0,47	0,0808	0,652	0,029
102	110	114	98,144				0,7034	0,665	0,047
103	113	114	98,144	-13,856 -14,48	6,872 7,608	0,55 0,61	0,7088	0,663	0,044
104	113	126	102,656	-11,344	7,616	0,61	0,7291	0,677	0,058
105	83	92	89,872	6,872	7,010	0,61	0,7291	0,684	0,032
100	87	89	88,744	1,744	7,72	0,63	0,7324	0,690	0,049
107	86	95	91	5	7,992	0,63	0,7337	0,697	0,043
108	85	79				0,66		0,703	0,042
110	72	97	84,984 91,752	-0,016	8,232		0,7454		0,042
111				19,752	8,232	0,66	0,7454	0,710	0,039
111	103 94	118 100	99,648 92,88	-3,352 -1,12	8,648 8,728	0,69	0,7549 0,758	0,716 0,723	0,039
113	90	78	84,608	-5,392	8,736	0,70	0,758	0,723	0,033
113	72	58	77,088	5,088	8,864	0,70	0,7611	0,729	0,029
115	110	118	99,648	-10,352	9,24	0,71	0,7011	0,733	0,028
116	83	80	85,36	2,36	9,608	0,74	0,7794	0,742	0,028
117	75	80	85,36	10,36	9,768	0,77	0,7794	0,755	0,031
118	84	81	85,736	1,736	10	0,78	0,7823	0,753	0,027
119	77	81	85,736	8,736	10,224	0,80	0,7939	0,761	0,027
120	75	82	86,112	11,112	10,224	0,83	0,7967	0,774	0,023
121	85	83	86,488	1,488	10,496	0,83	0,7995	0,774	0,023
122	70	83	86,488	16,488	10,456	0,85	0,8023	0,787	0,015
123	89	91	89,496	0,496	11,104	0,89	0,8023	0,794	0,020
124	78	84	86,864	8,864	11,112	0,89	0,8133	0,800	0,013
125	101	110	96,64	-4,36	11,504	0,92	0,8212	0,806	0,015
126	78	85	87,24	9,24	11,624	0,92	0,8212	0,800	0,013
127	80	86	87,616	7,616	12,232	0,98	0,8365	0,819	0,017
128	73	86	87,616	14,616	12,752	1,02	0,8438	0,819	0,017
129	74	87	87,992	13,992	13,496	1,08	0,8599	0,832	0,028
130	83	84	86,864	3,864	13,52	1,09	0,8621	0,839	0,023
131	84	87	87,992	3,992	13,856	1,11	0,8665	0,845	0,023
132	80	87	87,992	7,992	13,864	1,11	0,8665	0,852	0,015
133	87	86	87,616	0,616	13,992	1,12	0,8686	0,858	0,013
134	85	85	87,24	2,24	14,24	1,14	0,8729	0,865	0,008
135	102	105	94,76	-7,24	14,4	1,16	0,872	0,803	0,006
136	85	115	98,52	13,52	14,616	1,17	0,879	0,877	0,002
130	0.5	113	70,32	13,32	17,010	1,1/	0,077	0,077	0,002

© Hak Cipta Di Lindungi Undang-Undang

 $^{1.\} Dilarang\ Mengutip\ sebagian\ atau\ seluruh\ dokumen\ ini\ tanpa\ mencantumkan\ sumber$

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

137	92	97	91,752	-0,248	14,88	1,20	0,8849	0,884	0,001
138	93	93	90,248	-2,752	14,904	1,20	0,8849	0,890	0,005
139	91	91	89,496	-1,504	15,608	1,25	0,8944	0,897	0,002
140	90	90	89,12	-0,88	16,088	1,29	0,9015	0,903	0,002
141	110	100	92,88	-17,12	16,488	1,32	0,9066	0,910	0,003
142	95	95	91	-4	16,752	1,35	0,9115	0,916	0,005
143	97	97	91,752	-5,248	17,52	1,41	0,9207	0,923	0,002
144	93	93	90,248	-2,752	17,624	1,42	0,9222	0,929	0,007
145	90	90	89,12	-0,88	17,872	1,44	0,9251	0,935	0,010
146	98	98	92,128	-5,872	18,504	1,49	0,9319	0,942	0,010
147	101	101	93,256	-7,744	18,6	1,49	0,9319	0,948	0,016
148	105	105	94,76	-10,24	18,88	1,52	0,9357	0,955	0,019
149	105	109	96,264	-8,736	19,504	1,57	0,9418	0,961	0,019
150	106	110	96,64	-9,36	19,752	1,59	0,9441	0,968	0,024
151	107	102	93,632	-13,368	19,776	1,59	0,9441	0,974	0,030
152	102	102	93,632	-8,368	20,768	1,67	0,9525	0,981	0,028
153	104	104	94,384	-9,616	22,504	1,81	0,9649	0,987	0,022
154	102	106	95,136	-6,864	24,52	1,97	0,9756	0,994	0,018
155	110	109	96,264	-13,736	27,768	2,23	0,9871	1,000	0,013
			Jumlah	-0,368	0				0,058
			Mean	-0,00237	<u></u>)		
		//	varians	155,061		10			
			St. Dev	12,452					

Berdasarkan tabel tersebut diperoleh nilai L_{hitung} maksimum 0,058. Dalam daftar nilai kritis L untuk Uji Liliefors (nilai L_{tabel}) dengan taraf nyata 0,05 dan n = 155 (di atas 30) diperoleh $L_{(0,05)}$ (155) = $\frac{0,886}{\sqrt{155}}$ = 0,071. Karena L_{hitung} < L_{tabel} yaitu 0,058 < 0,071, maka dapat disimpulkan bahwa galat taksiran Y atas X_1 berdistribusi Normal atau sampel berasal dari populasi yang berdistribusi normal.

B. Uji Persyaratan Normalitas Galat Taksiran Regresi Y atas X₂

Pengujian Normalitas dilakukan dengan menggunakan uji Liliefors dengan

Persamaan Regresi Y atas X_2 adalah $Y = 41,694 + 0,529 X_2$

Perhitungan Galat Taksiran Model Regresi Y atas X2

No.	Y	X_2	у	Y-Y	f.yi	Zi	F(Zi)	S(Zi)	F(Zi)-S(Zi)
1	73	71	79,253	6,253	-34,16	-2,95	0,0016	0,006	0,005
2	99	108	98,826	-0,174	-33,631	-2,90	0,0019	0,013	0,011
3	101	74	80,84	-20,16	-28,515	-2,46	0,0069	0,019	0,012
4	73	56	71,318	-1,682	-27,283	-2,35	0,0094	0,026	0,016
5	115	74	80,84	-34,16	-21,921	-1,89	0,0294	0,032	0,003
6	107	101	95,123	-11,877	-20,16	-1,74	0,0409	0,039	0,002
7	79	70	78,724	-0,276	-19,87	-1,71	0,0436	0,045	0,002
8	79	85	86,659	7,659	-18,747	-1,62	0,0526	0,052	0,001
9	81	108	98,826	17,826	-16,464	-1,42	0,0778	0,058	0,020
10	74	85	86,659	12,659	-16,232	-1,40	0,0808	0,065	0,016
11	106	116	103,058	-2,942	-16,102	-1,39	0,0823	0,071	0,011
12	115	87	87,717	-27,283	-15,761	-1,36	0,0869	0,077	0,009
13	81	90	89,304	8,304	-15,566	-1,34	0,0901	0,084	0,006
14	86	109	99,355	13,355	-15,413	-1,33	0,0918	0,090	0,001
15	99	83	85,601	-13,399	-15,406	-1,33	0,0918	0,097	0,005
16	77	60	73,434	-3,566	-15,29	-1,32	0,0934	0,103	0,010
17	112	79	83,485	-28,515	-15,232	-1,31	0,0951	0,110	0,015
18	70	69	78,195	8,195	-14,877	-1,28	0,1003	0,116	0,016
19	61	67	77,137	16,137	-13,928	-1,20	0,1151	0,123	0,007
20	119	117	103,587	-15,413	-13,921	-1,20	0,1151	0,129	0,014
21	110	108	98,826	-11,174	-13,399	-1,15	0,1251	0,135	0,010
22	112	112	100,942	-11,058	-12,986	-1,12	0,1314	0,142	0,011
23	113	106	97,768	-15,232	-12,761	-1,10	0,1357	0,148	0,013
24	115	115	102,529	-12,471	-12,471	-1,07	0,1423	0,155	0,013
25	81	79	83,485	2,485	-11,942	-1,03	0,1515	0,161	0,010
26	109	109	99,355	-9,645	-11,942	-1,03	0,1515	0,168	0,016
27	98	65	76,079	-21,921	-11,877	-1,02	0,1539	0,174	0,020
28	106	116	103,058	-2,942	-11,174	-0,96	0,1685	0,181	0,012
29	115	75	81,369	-33,631	-11,058	-0,95	0,1711	0,187	0,016
30	86	74	80,84	-5,16	-10,819	-0,93	0,1762	0,194	0,017
31	99	82	85,072	-13,928	-10,116	-0,87	0,1922	0,200	0,008
32	110	110	99,884	-10,116	-10,095	-0,87	0,1922	0,206	0,014
33	98	71	79,253	-18,747	-9,863	-0,85	0,1977	0,213	0,015
34	74	68	77,666	3,666	-9,645	-0,83	0,2033	0,219	0,016
35	110	101	95,123	-14,877	-9,587	-0,83	0,2033	0,226	0,023
36	72	75	81,369	9,369	-9,348	-0,80	0,2119	0,232	0,020
37	106	109	99,355	-6,645	-8,573	-0,74	0,2296	0,239	0,009
38	91	80	84,014	-6,986	-8,232	-0,71	0,2389	0,245	0,006
39	71	76	81,898	10,898	-7,993	-0,69	0,2451	0,252	0,007
40	90	65	76,079	-13,921	-7,29	-0,63	0,2643	0,258	0,006

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

 $^{2.\} Pengutipan\ hanya\ untuk\ keperluan\ pendidikan,\ penelitian\ dan\ penulisan\ karya\ ilmiah$

^{3.} Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

41	07	(7	77 127	0.962	7 202	0.62	0.2642	0.265	0.000
41 42	87 97	67 100	77,137 94,594	-9,863	-7,283 -6,986	-0,63 -0,60	0,2643 0,2743	0,265 0,271	0,000
				-2,406		*	*		
43	71	66 75	76,608	5,608	-6,877	-0,59	0,2776	0,277	0,000
44	63		81,369	18,369	-6,754	-0,58	0,281	0,284	0,003
45	93	112	100,942	7,942	-6,645	-0,57	0,2843	0,290	0,006
46	98	106	97,768	-0,232	-6,348	-0,55	0,2912	0,297	0,006
47	115	116	103,058	-11,942	-6,29	-0,54	0,2946	0,303	0,009
48	81	80	84,014	3,014	-6,232	-0,54	0,2946	0,310	0,015
49	98	76	81,898	-16,102	-6,174	-0,53	0,2981	0,316	0,018
50	87	110	99,884	12,884	-6,095	-0,52	0,3015	0,323	0,021
51	102	101	95,123	-6,877	-5,877	-0,50	0,3085	0,329	0,021
52	77	78	82,956	5,956	-5,341	-0,46	0,3228	0,335	0,013
53	79	59	72,905	-6,095	-5,16	-0,44	0,33	0,342	0,012
54	87	102	95,652	8,652	-5,044	-0,43	0,3336	0,348	0,015
55	88	110	99,884	11,884	-4,761	-0,41	0,3409	0,355	0,014
56	94	112	100,942	6,942	-4,761	-0,41	0,3409	0,361	0,020
57	74	89	88,775	14,775	-4,761	-0,41	0,3409	0,368	0,027
58	79	80	84,014	5,014	-4,703	-0,40	0,3446	0,374	0,030
59	93	110	99,884	6,884	-4,464	-0,38	0,352	0,381	0,029
60	88	78	82,956	-5,044	-3,993	-0,34	0,3669	0,387	0,020
61	75	77	82,427	7,427	-3,566	-0,31	0,3783	0,394	0,015
62	69	66	76,608	7,608	-3,341	-0,29	0,3859	0,400	0,014
63	87	101	95,123	8,123	-3,153	-0,27	0,3936	0,406	0,013
64	77	83	85,601	8,601	-3,051	-0,26	0,3974	0,413	0,016
65	70	78	82,956	12,956	-2,942	-0,25	0,4013	0,419	0,018
66	73	76	81,898	8,898	-2,942	-0,25	0,4013	0,426	0,025
67	70	83	85,601	15,601	-2,812	-0,24	0,4052	0,432	0,027
68	91	77	82,427	-8,573	-2,406	-0,21	0,4168	0,439	0,022
69	73	82	85,072	12,072	-2,283	-0,19	0,4247	0,445	0,020
70	75	57	71,847	-3,153	-2,283	-0,19	0,4247	0,452	0,027
71	103	104	96,71	-6,29	-2,109	-0,18	0,4286	0,458	0,029
72	102	105	97,239	-4,761	-2,109	-0,18	0,4286	0,465	0,036
73	97	80	84,014	-12,986	-1,682	-0,14	0,4443	0,471	0,027
74	74	83	85,601	11,601	-1,225	-0,10	0,4602	0,477	0,017
75 7.5	76	84	86,13	10,13	-1,167	-0,10	0,4602	0,484	0,024
76	72	89	88,775	16,775	-0,696	-0,06	0,4761	0,490	0,014
77	92	85	86,659	-5,341	-0,696	-0,06	0,4761	0,497	0,021
78	106	84	86,13	-19,87	-0,276	-0,02	0,492	0,503	0,011
79	83	111	100,413	17,413	-0,232	-0,02	0,492	0,510	0,018
80	81	87	87,717	6,717	-0,174	-0,01	0,496	0,516	0,020
81	89	101	95,123	6,123	-0,058	0,00	0,5	0,523	0,023
82	115	116	103,058	-11,942	0,478	0,04	0,516	0,529	0,013
83	95	87	87,717	-7,283	1,123	0,10	0,5398	0,535	0,004
84	72	87	87,717	15,717	1,188	0,11	0,5438	0,542	0,002
85	73	89	88,775	15,775	1,246	0,11	0,5438	0,548	0,005
86	72	66	76,608	4,608	2,304	0,20	0,5793	0,555	0,024
87	76	88	88,246	12,246	2,485	0,22	0,5871	0,561	0,026
88	95	88	88,246	-6,754	3,014	0,26	0,6026	0,568	0,035
89	76	89	88,775	12,775	3,666	0,32	0,6255	0,574	0,051
90	90	87	87,717	-2,283	3,84	0,33	0,6293	0,581	0,049

© Hak Cipta Di Lindungi Undang-Undang

 $^{1.\} Dilarang\ Mengutip\ sebagian\ atau\ seluruh\ dokumen\ ini\ tanpa\ mencantumkan\ sumber$

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

91	78	91	90 922	11 022	4.204	0.27	0.6442	0.507	0.057
91	90	85	89,833 86,659	-3,341	4,304 4,608	0,37 0,40	0,6443 0,6554	0,587 0,594	0,057 0,062
93	104	106	97,768	-6,232	5,014	0,44	0,67	0,600	0,002
93	90	87	87,717	-0,232	5,608	0,44	0,6879	0,606	0,070
95	76	89	88,775	12,775		0,49			0,081
96	70	73	80,311	10,311	5,956 6,123	0,53	0,6985 0,7019	0,613 0,619	0,086
90	101	112	100,942	-0,058	6,253	0,53	0,7019	0,619	0,083
98		89							
98	81 87	90	88,775	7,775 2,304	6,536	0,57	0,7157 0,719	0,632	0,083
100	90	89	89,304 88,775		6,717	0,58			
		89		-1,225	6,884	0,60	0,7257	0,645	0,081
101	80		88,775	8,775	6,942	0,60	0,7257	0,652	0,074
102	110	111	100,413	-9,587	6,949	0,60	0,7257	0,658	0,068
103	112	104	96,71	-15,29	7,427	0,64	0,7389	0,665	0,074
104	113	105	97,239	-15,761	7,608	0,66	0,7454	0,671	0,074
105	114	106	97,768	-16,232	7,659	0,66	0,7454	0,677	0,068
106	83	59	72,905	-10,095	7,775	0,67	0,7486	0,684	0,065
107	87	88	88,246	1,246	7,942	0,69	0,7549	0,690	0,065
108	86	86	87,188	1,188	8,123	0,70	0,758	0,697	0,061
109	85	95	91,949	6,949	8,195	0,71	0,7611	0,703	0,058
110	72	82	85,072	13,072	8,304	0,72	0,7642	0,710	0,055
111	103	107	98,297	-4,703	8,536	0,74	0,7704	0,716	0,054
112	94	101	95,123	1,123	8,601	0,75	0,7734	0,723	0,051
113	90	86	87,188	-2,812	8,652	0,75	0,7734	0,729	0,044
114	72	89	88,775	16,775	8,775	0,76	0,7764	0,735	0,041
115	110	100	94,594	-15,406	8,898	0,77	0,7794	0,742	0,037
116	83	105	97,239	14,239	9,007	0,78	0,7823	0,748	0,034
117	75	90	89,304	14,304	9,369	0,81	0,7881	0,755	0,033
118	84	97	93,007	9,007	9,536	0,83	0,7967	0,761	0,035
119	77	74	80,84	3,84	10,007	0,87	0,8078	0,768	0,040
120	75	85	86,659	11,659	10,13	0,88	0,8106	0,774	0,036
121	85	111	100,413	15,413	10,311	0,89	0,8133	0,781	0,033
122	70	90	89,304	19,304	10,898	0,94	0,8264	0,787	0,039
123	89	60	73,434	-15,566	11,304	0,98	0,8365	0,794	0,043
124	78	90	89,304	11,304	11,601	1,00	0,8413	0,800	0,041
125	101	97	93,007	-7,993	11,659	1,01	0,8438	0,806	0,037
126	78	100	94,594	16,594	11,833	1,02	0,8461	0,813	0,033
127	80	102	95,652	15,652	11,884	1,03	0,8485	0,819	0,029
128	73	88	88,246	15,246	12,072	1,05	0,8531	0,826	0,027
129	74	97	93,007	19,007	12,246	1,06	0,8554	0,832	0,023
130	83	97	93,007	10,007	12,659	1,10	0,8643	0,839	0,026
131	84	98	93,536	9,536	12,775	1,11	0,8665	0,845	0,021
132	80	98	93,536	13,536	12,775	1,11	0,8665	0,852	0,015
133	87	98	93,536	6,536	12,884	1,12	0,8686	0,858	0,011
134	85	98	93,536	8,536	12,956	1,12	0,8686	0,865	0,004
135	102	105	97,239	-4,761	13,072	1,13	0,8708	0,871	0,000
136	85	90	89,304	4,304	13,355	1,16	0,877	0,877	0,000
137	92	96	92,478	0,478	13,536	1,17	0,879	0,884	0,005
138	93	93	90,891	-2,109	14,239	1,23	0,8907	0,890	0,000
139	91	91	89,833	-1,167	14,304	1,24	0,8925	0,897	0,004
140	90	90	89,304	-0,696	14,775	1,28	0,8997	0,903	0,004

© Hak Cipta Di Lindungi Undang-Undang

 $^{1.\} Dilarang\ Mengutip\ sebagian\ atau\ seluruh\ dokumen\ ini\ tanpa\ mencantumkan\ sumber$

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

141	110	98	93,536	-16,464	15,246	1,32	0,9066	0,910	0,003
142	95	95	91,949	-3,051	15,413	1,33	0,9082	0,916	0,008
143	97	97	93,007	-3,993	15,601	1,35	0,9115	0,923	0,011
144	93	93	90,891	-2,109	15,652	1,35	0,9115	0,929	0,018
145	90	90	89,304	-0,696	15,717	1,36	0,9131	0,935	0,022
146	98	98	93,536	-4,464	15,775	1,37	0,9147	0,942	0,027
147	101	101	95,123	-5,877	16,137	1,40	0,9192	0,948	0,029
148	105	102	95,652	-9,348	16,594	1,44	0,9251	0,955	0,030
149	105	108	98,826	-6,174	16,775	1,45	0,9265	0,961	0,035
150	106	106	97,768	-8,232	16,775	1,45	0,9265	0,968	0,041
151	107	103	96,181	-10,819	17,413	1,51	0,9345	0,974	0,040
152	102	102	95,652	-6,348	17,826	1,54	0,9382	0,981	0,042
153	104	104	96,71	-7,29	18,369	1,59	0,9441	0,987	0,043
154	102	105	97,239	-4,761	19,007	1,64	0,9495	0,994	0,044
155	110	105	97,239	-12,761	19,304	1,67	0,9525	1,000	0,048
			Jumlah	-4,878					0,048
			Mean	-0,03147					
			varians	134,035					
		/// /-	St. Dev	11,577					

Berdasarkan tabel tersebut diperoleh nilai L_{hitung} maksimum 0,048. Dalam daftar nilai kritis L untuk Uji Liliefors (nilai L_{tabel}) dengan taraf nyata 0,05 dan n = 155 (di atas 30) diperoleh $L_{(0,05)~(155)}=\frac{0,886}{\sqrt{155}}$ =0,071. Karena $L_{hitung} < L_{tabel}$ yaitu 0,048 < 0,071, maka dapat disimpulkan bahwa galat taksiran Y atas X_2 berdistribusi Normal atau sampel berasal dari populasi yang berdistribusi normal.

Perhitungan Persamaan Regresi Sederhana, Uji Kelinieran Regresi

Dalam hal ini terlebih dahulu dicari persamaan regresi Y atas X₁ yaitu :

$$Y = a + bX$$

Keterangan:

Y = Variabel terikat

 $X_1 = Variabel\ bebas$

a = Koefisien Intersip

b = Koefisien Regresi Y atas X

Untuk mencari koefisien-koefisien a dan b untuk regresi linier, dihitung dengan menggunakan rumus, yaitu :

$$a = \frac{\left(\sum Y\right)\left(\sum X^{2}\right) - \left(\sum X\right)\left(\sum XY\right)}{N\sum X^{2} - \left(\sum X\right)^{2}}$$
$$b = \frac{N\left(\sum XY\right) - \left(\sum X\right)\left(\sum Y\right)}{N\sum X^{2} - \left(\sum X\right)^{2}}$$

Dari tabel data penelitian diperoleh data-data sebagai berikut :

$$\Sigma Y = 13920$$
 $\Sigma Y^2 = 1280286$
 $\Sigma X_1 = 14232$ $\Sigma X_1^2 = 1351336$
 $\Sigma X_1 Y = 1294882$ $N = 155$

Berdasarkan data-data di atas maka dapat dicari persamaan regresi Y atas X_1 sebagai berikut :

$$a = \frac{\left(\sum Y\right)\left(\sum X_{1}^{2}\right) - \left(\sum X_{1}\right)\left(\sum X_{1}Y\right)}{N\sum X_{1}^{2} - \left(\sum X_{1}\right)^{2}}$$

$$= \frac{\left(13920\right)\left(1351336\right) - \left(14232\right)\left(1294882\right)}{155.1280286 - \left(13920\right)^{2}}$$

$$= \frac{381836496}{6907256}$$

$$a = 55,280$$

$$b = \frac{N(\sum X_1 Y) - (\sum X_1)(\sum Y)}{N\sum X_1^2 - (\sum X_1)^2}$$

$$= \frac{155(1294882) - (14232)(13920)}{155.1351336 - (14232)^2}$$

$$= \frac{2597270}{6907256}$$

$$= 0,376$$

Maka garis regresi Y atas X_1 dapat dituliskan menjadi $Y = 55,280 + 0,376 X_1$.

1. Uji Linieritas dan keberartian persamaan regresi sederhana Y atas X_1

Kemudian untuk menghitung besarnya keberartian digunakan rumus F seperti berikut ini :

a. Jumlah Kuadrat Tuna Cocok JK (TC)

JK (T) =
$$\Sigma Y^2 = 1280286$$

b. Jumlah Kuadrat Regresi JK (a)

JK (a) =
$$\frac{\left(\sum Y\right)^2}{N} = \frac{\left(13920\right)^2}{155} = 1250105,8$$

c. Jumlah Kuadrat Regresi JK (b/a)

JK (b/a) = b
$$\left\{ \sum XY - \frac{\left(\sum X\right)\left(\sum Y\right)}{N} \right\}$$

= 0,376 $\left\{ 1294882 - \frac{\left(14232\right)\left(13920\right)}{155} \right\}$
= 6300.8182

d. Jumlah Kuadrat Sisa JK (S)

e. Jumlah Kuadrat Kekeliruan JK (G)

JK (E) =
$$\sum Xi \left[\sum Y^2 - \frac{\left(\sum Y\right)^2}{N}\right]$$

No	X ₁	Ni	K	Y	Y	Y^2	1 d \mathbf{Y}^2	JK (E)
1	58	1	3	73	206	5329	14234	88,66667
2	58			61		3721		
3	58			72		5184		
4	60	2	2	70	179	4900	16781	760,5
5	60			109		11881		
6	65	3	2	72	170	5184	14788	338
7	65			98		9604		
8	69	4	4	106	361	11236	33255	674,75
9	69			71		5041		
10	69			87		7569		
11	69			97		9409		
12	70	5	4	71	330	5041	28268	1043
13	70			63		3969		
14	70			93		8649		
15	70			103		10609		
16	71	6	2	98	179	9604	16165	144,5
17	71			81		6561		
18	72	7	2	87	184	7569	16978	50
19	72)/		97	7 / (9409		
20	73	8	3 /	77	227	5929	17181	4,666667
21	73			74		5476		
22	73			76		5776		
23	74	9	4	79	321	6241	25925	164,75
24	74			72		5184		
25	74		34.	90		8100		
26	74		CONTROL OF	80		6400		
27	75	10	2	87	197	7569	19669	264,5
28	75			110	4/	12100		
29	76	11	5	83	424	6889	36472	516,8
30	76			81		6561		
31	76			89	VQY/	7921		
32	76			70	> ///	4900		
33	76			101		10201		
34	77	12	4	72	319	5184	25761	320,75
35	77			76		5776		
36	77			95		9025		
37	77			76		5776		
38	78	13	5	77	401	5929	32515	354,8
39	78			75		5625		
40	78			69		4761		
41	78			90		8100		
42	78			90		8100		
43	79	14	4	110	389	12100	38241	410,75
44	79			90		8100		
45	79			104		10816		
46	79			85		7225		
47	80	15	2	83	158	6889	12514	32
48	80			75		5625		

© Hak Cipta Di Lindungi Undang-Undang

 $^{1.\} Dilarang\ Mengutip\ sebagian\ atau\ seluruh\ dokumen\ ini\ tanpa\ mencantumkan\ sumber$

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

49	81	16	2	84	161	7056	12985	24,5
50	81	10		77	101	5929	12703	21,5
51	82	17	3	86	267	7396	24257	494
52	82			106	201	11236	2.1207	.,,
53	82			75		5625		
54	83	18	3	98	253	9604	21729	392,6667
55	83	10		85	200	7225	21,2	2,000,
56	83			70		4900		
57	84	19	3	73	234	5329	18302	50
58	84	-		78		6084		
59	84			83		6889		
60	85	20	3	73	236	5329	18638	72,66667
61	85	-		78		6084		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
62	85			85		7225		
63	86	21	3	80	240	6400	19298	98
64	86			73		5329		
65	86			87		7569		
66	87	22	4	113	351	12769	31701	900,75
67	87			74		5476		, , , , ,
68	87			84	TYV	7056		
69	87	7/		80		6400		
70	89	23	7	115	653	13225	61507	591,4286
71	89	/		87	\	7569		
72	89			88		7744		
73	89			94		8836		
74	89			92		8464		
75	89			90		8100		
76	89		- Table	87		7569		
77	90	24	2	90	180	8100	16200	0
78	90			90	<u> </u>	8100		
79	91	25	5	79	430	6241	37244	264
80	91			95		9025		
81	91	JY'		76		5776		
82	91			89		7921		
83	91		AI	91		8281		
84	92	26	3	91	246	8281	20354	182
85	92			72		5184		
86	92			83		6889		
87	93	27	2	93	186	8649	17298	0
88	93			93		8649		
89	94	28	2	79	152	6241	11570	18
90	94			73		5329		
91	95	29	3	81	262	6561	22982	100,6667
92	95			86		7396		
93	95			95		9025		
94	97	30	5	79	415	6241	34923	478
95	97			75		5625		
96	97			72		5184		
97	97			92		8464		
98	97			97		9409		

© Hak Cipta Di Lindungi Undang-Undang

 $^{1.\} Dilarang\ Mengutip\ sebagian\ atau\ seluruh\ dokumen\ ini\ tanpa\ mencantumkan\ sumber$

99	98	31	1	98	98	9604	9604	0
100	99	32	6	81	528	6561	48716	2252
101	99		-	115		13225		
102	99			115		13225		
103	99			74		5476		
104	99			73		5329		
105	99			70		4900		
106	100	33	4	74	356	5476	32496	812
107	100			78		6084		
108	100			94		8836		
109	100			110		12100		
110	101	34	1	101	101	10201	10201	0
111	102	35	2	107	209	11449	21853	12,5
112	102			102		10404		
113	104	36	1	104	104	10816	10816	0
114	105	37	3	102	309	10404	31833	6
115	105			102		10404		
116	105			105		11025		
117	106	38	1	102	102	10404	10404	0
118	108	39	3	107	295	11449	29153	144,6667
119	108	77/	7	90		8100		
120	108	7/		98	//	9604		
121	109	40	4	112	437	12544	47769	26,75
122	109			110		12100		
123	109			105		11025		
124	109			110		12100		
125	110	41	4	99	399	9801	39887	86,75
126	110		200	93		8649		
127	110	\	Pro Section	101	1 /	10201		
128	110			106	4 /	11236		
129	113	42	4	88	341	7744	29809	738,75
130	113			77		5929		
131	113	(YY')		70		4900		
132	113		AB	106		11236		
133	114	43	4	101	440	10201	48514	114
134	114			112		12544		
135	114			115		13225		
136	114			112		12544		
137	115	44	4	74	353	5476	32031	878,75
138	115			81		6561		
139	115			113		12769		
140	115			85		7225		
141	116	45	3	115	336	13225	37790	158
142	116			119		14161		
143	116			102		10404		
144	118	46	3	91	304	8281	30990	184,6667
145	118			103		10609		
146	118			110		12100		
147	119	47	1	115	115	13225	13225	0
148	120	48	1	86	86	7396	7396	0

© Hak Cipta Di Lindungi Undang-Undang

 $^{1.\} Dilarang\ Mengutip\ sebagian\ atau\ seluruh\ dokumen\ ini\ tanpa\ mencantumkan\ sumber$

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

149	121	49	1	81	81	6561	6561	0
150	122	50	1	99	99	9801	9801	0
151	124	51	2	99	186	9801	17370	72
152	124			87		7569		
153	125	52	1	110	110	12100	12100	0
154	126	53	2	106	220	11236	24232	32
155	126			114		12996		
							Σ JK (E)	14353,95

f. Jumlah kuadrat Tuna Cocok JK (TC)

Rata-rata jumlah kuadrat RJK didapat dari hasil bagi JK dengan db masing-masing, dihitung sebagai berikut :

g. Varians Regresi RJK (b/a) = JK (b/a)

$$RJK (b/a) = JK (b/a) = 6300,8182$$

h. Varians Residu (S^2 res) = RJK (res) :

RJK (res) =
$$\frac{JK(S)}{N-2} = \frac{23879,375}{155-2} = 156,074$$

i. Varian Tuna cocok RJK (TC)

$$RJK_{(TC)} = \frac{JK(TC)}{K-2} = \frac{9525,4301}{53-2} = 186,77$$

db regresi total: n =155

db regresi (a) =1

db regresi (b/a) = 1

db. Sisa = n - 2 = 155 - 2 = 153

db. Tuna cocok = k - 2 = 53 - 2 = 51

db. Kekeliruan = n - k = 155 - 53 = 13

j. Varians kekeliruan (S² e) RJK (G)

RJK (E) =
$$\frac{JK(E)}{N-k} = \frac{14353,95}{155-53} = 140,72$$

k. Uji kelinieran Persamaan Regresi

Besar Kelinieran Persamaan regresi dihitung dengan menggunakan rumus:

Fh =
$$\frac{RJK(TC)}{RJK(E)} = \frac{186,77}{140,72} = 1,32$$

Nilai F_{hitung} tersebut dikonsultasikan dengan harga F_{tab} pada taraf signifikansi 5% dengan derajat kebebasan (dk) pembilang = K-2=53-2=51 dan derajat kebebasan (dk) penyebut = N-K=155-53=102 diperoleh $F_{tabel}=1,47$ dengan demikian dapat disimpulkan bahwa nilai $F_{hit} < F_{tab}$ (1,32 < 1,47 sehingga dapat disimpulkan bahwa persamaan regresi $Y=55,280+0,0376X_1$ adalah **linier**.

2. Uji keberartian persamaan regresi

Fh =
$$\frac{RJK(b/a)}{RJK(S)} = \frac{6300,81}{156,07} = 40,37$$

Nilai F_{hitung} tersebut dikonsultasikan dengan harga F_{tab} pada taraf signifikansi 5% dengan derajat kebebasan (dk) pembilang 1 : 53 F_{tabel} = 4,02 dengan demikian dapat disimpulkan bahwa nilai $F_{hit} > F_{tab}$ (40,37 > 4,02) sehingga dapat disimpulkan koefisien arah regresi Y atas X_1 adalah berarti pada taraf signifikansi 5%.

Rangkuman Anava Uji Linieritas Antara X₁ Dengan Y

Sumber Variasi	Jk	dk	RJK	F hitung	F tabel $\alpha =$
					0,05
Total	30180,190	154	-	-	-
Regresi (a)	15826,248	1	15826,248		
Regresi (b/a)	6300,818	1	6300,818	40,37	4,02
Residu	23879,375	153	156,074		
Tuna Cocok	9525,430	51	186,773	1,32	1,47
Galat	14353,945	102	140,775		

Perhitungan Persamaan Regresi Sederhana, Uji Kelinieran Regresi $\mbox{Variabel Y atas } X_2$

Dalam hal ini terlebih dahulu dicari persamaan regresi Y atas X₂ yaitu :

$$Y = a + bX$$

Keterangan:

Y = Variabel terikat

 $X_1 = Variabel\ bebas$

a = Koefisien Intersip

b = Koefisien Regresi Y atas X

Untuk mencari koefisien-koefisien a dan b untuk regresi linier, dihitung dengan menggunakan rumus, yaitu :

$$a = \frac{(\sum Y)(\sum X^{2}) - (\sum X)(\sum XY)}{N\sum X^{2} - (\sum X)^{2}}$$
$$b = \frac{N(\sum XY) - (\sum X)(\sum Y)}{N\sum X^{2} - (\sum X)^{2}}$$

Dari tabel data penelitian diperoleh data-data sebagai berikut :

$$\Sigma Y = 13920$$
 $\Sigma Y^2 = 1280286$ $\Sigma X_2 = 14088$ $\Sigma X_2^2 = 1314504$ $\Sigma X_2 = 1283213$ $\Sigma X_2 = 155$

Berdasarkan data-data di atas maka dapat dicari persamaan regresi Y atas X_2 sebagai berikut :

$$a = \frac{\left(\sum Y\right)\left(\sum X_{2}^{2}\right) - \left(\sum X_{2}\right)\left(\sum X_{2}Y\right)}{N\sum X_{2}^{2} - \left(\sum X_{2}\right)^{2}}$$

$$= \frac{\left(13920\right)\left(1314504\right) - \left(14088\right)\left(1283213\right)}{155.1314504 - \left(14088\right)^{2}}$$

$$= \frac{11462616}{259776}$$

$$a = 41.693$$

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

⁻⁻⁻⁻⁻

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

$$b = \frac{N(\sum X_2 Y) - (\sum X_2)(\sum Y)}{N\sum X_2^2 - (\sum X_2)^2}$$

$$= \frac{155(1283213) - (14088)(13920)}{155.1314504 - (14088)^2}$$

$$= \frac{2793055}{5276376}$$

$$= 0,529$$

Maka garis regresi Y atas X_2 dapat dituliskan menjadi Y = 41,693 + 0,529 X_2 .

1. Uji Linieritas dan keberartian persamaan regresi sederhana Y atas X_2

Kemudian untuk menghitung besarnya keberartian digunakan rumus F seperti berikut ini :

a. Jumlah Kuadrat Tuna Cocok JK (TC)

JK (T) =
$$\Sigma Y^2 = 1280286$$

b. Jumlah Kuadrat Regresi JK (a)

JK (a) =
$$\frac{\left(\sum Y\right)^2}{N} = \frac{\left(13920\right)^2}{155} = 1250106$$

c. Jumlah Kuadrat Regresi JK (b/a)

JK (b/a) = b
$$\left\{ \sum XY - \frac{\left(\sum X\right)\left(\sum Y\right)}{N} \right\}$$

= 0,529 $\left\{ 1280286 - \frac{\left(14088\right)\left(13920\right)}{155} \right\}$
= 9538,752

d. Jumlah Kuadrat Sisa JK (S)

e. Jumlah Kuadrat Kekeliruan JK (E)

JK (E) =
$$\sum Xi \left[\sum Y^2 - \frac{\left(\sum Y\right)^2}{N} \right]$$

No.	\mathbf{X}_2	Ni	K	Y	Y	\mathbf{Y}^2	1 d \mathbf{Y}^2	JK (E)
1	56	1	1	73	73	5329	5329	0
2	57	2	1	75	75	5625	5625	0
3	59	3	2	79	162	6241	13130	8
4	59			83		6889		
5	60	4	2	77	166	5929	13850	72
6	60			89		7921		
7	65	5	2	98	188	9604	17704	32
8	65			90		8100		
9	66	6	3	71	212	5041	14986	4,666667
10	66			69		4761		
11	66			72		5184		
12	67	7	2	61	148	3721	11290	338
13	67			87		7569		
14	68	8		74	144	5476	10376	8
15	69			70		4900		
16	70	9	1	79	79	6241	6241	0
17	71	10	2	73	171	5329	14933	312,5
18	71/	\nearrow		98		9604		
19	73	11	1	70	70	4900	4900	0
20	74	12	4	101	379	10201	36751	840,75
21	74			115		13225		
22	74			86		7396	11	
23	74			77		5929		
24	75	13	3	115	250	13225	22378	1544,667
25	75		14	72		5184	//	,
26	75		freque	63	1	3969	//	
27	76	14	3	71	242	5041	19974	452,6667
28	76	7 \E		98	=3/	9604		,
29	76			73		5329		
30	77	15	2	75	166	5625	13906	128
31	77			91		8281		
32	78	16	3	77	235	5929	18573	164,6667
33	78			88		7744		
34	78			70		4900		
35	79	17	2	112	193	12544	19105	480,5
36	79			81		6561		,
37	80	18	4	91	348	8281	30492	216
38	80			81		6561		
39	80			79		6241		
40	80			97		9409		
41	82	19	3	99	244	9801	20314	468,6667
42	82			73		5329		
43	82			72		5184		
44	83	20	4	99	320	9801	26106	506
45	83			77		5929		
46	83			70		4900		
47	83			74		5476		

© Hak Cipta Di Lindungi Undang-Undang

 $^{1.\} Dilarang\ Mengutip\ sebagian\ atau\ seluruh\ dokumen\ ini\ tanpa\ mencantumkan\ sumber$

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

48	84	21	2	76	182	5776	17012	450
49	84			106	102	11236	1,012	
50	85	22	5	79	410	6241	33906	286
51	85			74		5476		
52	85			92		8464		
53	85			90		8100		
54	85			75		5625		
55	86	23	2	86	176	7396	15496	8
56	86			90	1.0	8100	10.70	
57	87	24	6	115	543	13225	50195	1053,5
58	87			81	0.0	6561	00170	1000,0
59	87			95		9025		
60	87			72		5184		
61	87			90		8100		
62	87			90		8100		
63	88	25	4	76	331	5776	27699	308,75
64	88	23		95	331	9025	27077	300,73
65	88			87		7569		
66	88			73		5329		
67	89	26	9	74	694	5476	53786	270,8889
68	89	20	9	72	094	5184	33780	270,0009
69	89			73		5329		
ļ				4				
70	89			76		5776		
71	89			76		5776		
72	89			81		6561		
73	89			90		8100		
74	89		- 14	80		6400		
75	89	27	Control of the contro	72	0	5184	7.41.64	272
76	90	27	8	81	656	6561	54164	372
77	90			87	\rightarrow	7569		
78	90			75		5625		
79	90			70		4900		
80	90			78		6084		
81	90			85		7225		
82	90			90		8100		
83	90	20		90	1.50	8100	110.55	0.1.7
84	91	28	2	78	169	6084	14365	84,5
85	91	20		91	105	8281	15200	
86	93	29	2	93	186	8649	17298	0
87	93			93	100	8649	1 15 70	
88	95	30	2	85	180	7225	16250	50
89	95			95		9025	0.4.5.	
90	96	31	1	92	92	8464	8464	0
91	97	32	5	84	439	7056	39031	486,8
92	97			101		10201		
93	97			74		5476		
94	97			83		6889		
95	97	_		97		9409		
96	98	33	6	84	544	7056	49954	631,3333
97	98			80		6400		

© Hak Cipta Di Lindungi Undang-Undang

 $^{1.\} Dilarang\ Mengutip\ sebagian\ atau\ seluruh\ dokumen\ ini\ tanpa\ mencantumkan\ sumber$

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

98	98			87		7569		
99	98			85		7225		
100	98			110		12100		
101	98			98		9604		
102	100	34	3	97	285	9409	27593	518
103	100	31		110	203	12100	21373	310
104	100			78		6084		
105	101	35	7	107	690	11449	68480	465,7143
106	101	33	,	110	070	12100	00400	703,7143
107	101			102		10404		
108	101			87		7569		
109	101			89		7921		
110	101			94		8836		
111	101	26	4	101	274	10201 7569	25209	429
	102	36	4	87	374		35398	429
113	102			80		6400		
114	102			105		11025		
115	102	27		102	107	10404	11110	0
116	103	37	1	107	107	11449	11449	0
117	104	38	3	103	319	10609	33969	48,66667
118	104			112		12544		
119	104			104		10816		
120	105	39	6	102	612	10404	62970	546
121	105			113		12769		
122	105			83		6889		
123	105			102		10404		
124	105		4	102		10404		
125	105		am	110	-0	12100		
126	106	40	5	113	535	12769	57421	176
127	106	\wedge		98	\rightarrow	9604		
128	106			104		10816		
129	106			114		12996		
130	106	(Y Y Y		106		11236		
131	107	41	1	103	103	10609	10609	0
132	108	42	4	99	395	9801	39487	480,75
133	108			81		6561		
134	108			110		12100		
135	108			105		11025		
136	109	43	3	86	301	7396	30513	312,6667
137	109			109		11881		
138	109			106		11236		
139	110	44	4	110	378	12100	36062	341
140	110			87		7569		
141	110			88		7744		
142	110		-	93		8649	·	
143	111	45	3	83	278	6889	26214	452,6667
144	111			110		12100		
145	111			85		7225		
146	112	46	4	112	400	12544	40230	230
147	112			93		8649		

© Hak Cipta Di Lindungi Undang-Undang

 $^{1.\} Dilarang\ Mengutip\ sebagian\ atau\ seluruh\ dokumen\ ini\ tanpa\ mencantumkan\ sumber$

148	112			94		8836		
149	112			101		10201		
150	115	47	1	115	115	13225	13225	0
151	116	48	4	106	442	11236	48922	81
152	116			106		11236		
153	116			115		13225		
154	116			115		13225		
155	117	49	1	119	119	14161	14161	0
							d JK (E)	13660,32

f. Jumlah kuadrat Tuna Cocok JK (TC)

Rata-rata jumlah kuadrat RJK didapat dari hasil bagi JK dengan db masing-masing, dihitung sebagai berikut :

g. Varians Regresi RJK (b/a) = JK (b/a)

$$RJK (b/a) = JK (b/a) = 9538,752$$

h. Varians Residu (S^2 res) = RJK (res) :

RJK (res) =
$$\frac{JK(S)}{N-2} = \frac{20641,44}{155-2} = 134,91$$

i. Varian Tuna cocok RJK (TC)

$$RJK_{(TC)} = \frac{JK(TC)}{K-2} = \frac{6981,122}{49-2} = 148,53$$

db regresi total: n =155

db regresi (
$$b/a$$
) = 1

db. Sisa
$$= n - 2 = 155 - 2 = 153$$

db. Tuna cocok
$$= k - 2 = 53 - 2 = 51$$

db. Kekeliruan
$$= n - k = 155 - 53 = 13$$

j. Varians kekeliruan (S² e) RJK (G)

RJK (E) =
$$\frac{JK(E)}{N-k} = \frac{13660,32}{155-49} = 128,87$$

k. Uji kelinieran Persamaan Regresi

Besar Kelinieran Persamaan regresi dihitung dengan menggunakan rumus :

Fh =
$$\frac{RJK(TC)}{RJK(E)} = \frac{148,53}{128,87} = 1,15$$

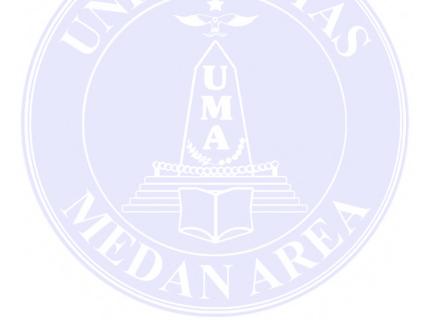
Nilai F_{hitung} tersebut dikonsultasikan dengan harga F_{tab} pada taraf signifikansi 5% dengan derajat kebebasan (dk) pembilang = K-2=49-2=47 dan derajat kebebasan (dk) penyebut = N-K=155-49=106 diperoleh $F_{tabel}=1,48$ dengan demikian dapat disimpulkan bahwa nilai $F_{hit} < F_{tab}$ (1,15 < 1,48) sehingga dapat disimpulkan bahwa persamaan regresi Y=41,693+0,529 X_2 adalah **linier**.

1. Uji keberartian persamaan regresi

Fh =
$$\frac{RJK(b/a)}{RJK(S)} = \frac{9538,752}{134,91} = 70,70$$

Nilai F_{hitung} tersebut dikonsultasikan dengan harga F_{tab} pada taraf signifikansi 5% dengan derajat kebebasan (dk) pembilang 1 : 53 F_{tabel} = 4,02 dengan demikian dapat disimpulkan bahwa nilai F_{hit} > F_{tab} (70,70> 4,02) sehingga dapat disimpulkan koefisien arah regresi Y atas X_2 adalah berarti pada taraf signifikansi 5%.

Rangkuman Anava Uji Linieritas Antara X2 Dengan Y


Sumber Variasi	Jk	dk	RJK	F hitung	F tabel $\alpha =$
					0,05
Total	30180,194	154) <u>//</u> -	-
Regresi (a)	16527,874	1 1	16527,874		
Regresi (b/a)	9538,752	1	9538,752	70,70	4,02
Residu	20641,442	153	134,991		
Tuna Cocok	6989,122	48	145,607	1,15	1,48
Galat	13652,320	105	130,002		

Uji Independensi Antar Variabel

Correlations

Correlations							
		Reward	Social Support				
	Pearson Correlation	1	,189*				
Reward	Sig. (2-tailed)		,018				
	N	155	155				
	Pearson Correlation	,189*	1				
Social Support	Sig. (2-tailed)	,018					
	N	155	155				

*. Correlation is significant at the 0.05 level (2-tailed).

Perhitungan Persamaan Regresi Ganda, Uji Kelinieran dan Keberartian Persamaan Regresi Ganda

Persamaan regresi multiple untuk dua variabel bebas adalah

$$\hat{Y} = a + b_1 X_1 + b_2 X_2$$

Harga-harga yang diperoleh dari perhitungan:

$$\Sigma X_1 = 14232$$
 $\Sigma X_2 = 14088$ $\Sigma Y = 13920$ $\Sigma X_1^2 = 1351336$ $\Sigma X_2^2 = 1314504$ $\Sigma Y^2 = 1280286$ $\Sigma X_1 Y = 1294882$ $\Sigma X_2 Y = 1283213$ $\Sigma X_2 Y = 1283213$ $\Sigma X_1 Y = 1294882$ $\Sigma X_2 Y = 1283213$ $\Sigma X_2 Y = 1283213$ $\Sigma X_1 Y = 1283213$ $\Sigma X_2 Y = 1283213$ $\Sigma X_1 Y = 1283213$ $\Sigma X_2 Y = 1283213$ $\Sigma X_1 Y = 1283213$ $\Sigma X_2 Y = 1283213$ $\Sigma X_1 Y = 1283213$ $\Sigma X_2 Y = 1283213$ $\Sigma X_1 Y = 1283213$ $\Sigma X_2 Y = 1283213$ $\Sigma X_1 Y = 1283213$ $\Sigma X_2 Y = 1283213$ $\Sigma X_1 Y = 1283213$ $\Sigma X_2 Y = 1283213$ $\Sigma X_1 Y = 1283213$ $\Sigma X_2 Y = 1283213$ $\Sigma X_1 Y = 1283213$ $\Sigma X_2 Y = 1283213$ $\Sigma X_1 Y = 1283213$ $\Sigma X_2 Y = 1283213$ $\Sigma X_1 Y = 1283213$ $\Sigma X_2 Y = 1283213$ $\Sigma X_1 Y = 1283213$ $\Sigma X_2 Y = 1283213$ $\Sigma Y_1 Y = 1283213$ $\Sigma Y_2 Y = 1283213$ $\Sigma Y_1 Y = 1283213$ $\Sigma Y_2 Y = 1283213$ $\Sigma Y_1 Y = 1283213$ $\Sigma Y_2 Y = 1283213$ $\Sigma Y_1 Y = 1283213$

Koefisien-koefisien a, b₁ dan b₂ dicari dengan rumus :

$$a = \hat{Y} = a + b_1 X_1 + b_2 X_2$$

$$b_1 = \frac{\left(\sum x_2^2\right) \left(\sum x_1 Y\right) - \left(\sum x_1 x_2\right) \left(\sum x_2 Y\right)}{\left(\sum x_1^2\right) \left(\sum x_2^2\right) - \left(\sum x_1 x_2\right)^2}$$

$$b_2 = \frac{\left(\sum x_1^2\right) \left(\sum x_2 Y\right) - \left(\sum x_1 x_2\right) \left(\sum x_2 Y\right)}{\left(\sum x_2^2\right) \left(\sum x_2^2\right) - \left(\sum x_1 x_2\right)^2}$$

untuk mencari harga-harga $x_1,\,x_2,\,y^2$ digunakan rumus :

$$\sum y^{2} = \sum Y^{2} - \frac{\left(\sum Y\right)^{2}}{N}$$

$$\sum y^{2} = 1280286 - \frac{\left(13920\right)^{2}}{155} = 30180,194$$

$$\sum x_{1}^{2} = \sum X_{1}^{2} - \frac{\left(\sum X_{1}\right)^{2}}{N}$$

$$\sum x_{1}^{2} = 1351336 - \frac{\left(14232\right)^{2}}{155} = 44562,942$$

$$\sum x_{2}^{2} = \sum X_{2}^{2} - \frac{\left(\sum X_{2}\right)^{2}}{N}$$

$$\sum x_{2}^{2} = 1314504 - \frac{\left(14088\right)^{2}}{155} = 34041,135$$

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

⁻⁻⁻⁻⁻

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

^{2.} Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah

$$\sum x_1 x_2 = \sum X_1 X_2 - \frac{\left(\sum X_1\right)\left(\sum X_2\right)}{N}$$

$$\sum x_1 x_2 = 1300921 - \frac{\left(14232\right)\left(14088\right)}{155} = 7369,929$$

$$\sum x_1 y = \sum X_1 Y - \frac{\left(\sum X_1\right)\left(\sum Y\right)}{N}$$

$$\sum x_1 y = 1294882 - \frac{\left(14232\right)\left(13920\right)}{155} = 16756,581$$

$$\sum x_2 y = \sum X_2 Y - \frac{\left(\sum X_2\right)\left(\sum Y\right)}{N}$$

$$\sum x_2 y = 1283213 - \frac{\left(14088\right)\left(13920\right)}{155} = 18019,71$$

Dengan memasukkan harga-harga di atas ke dalam rumus, maka didapat harga koefisien a₀, a₁ dan a₂ sebagai berikut :

$$b_{1} = \frac{(34041)(16756,581) - (7369,929)(18019,71)}{(44562,942)(34041,135) - (7369,929)^{2}}$$

$$= \frac{437609050,5}{1462657290} = 0,299$$

$$b_{2} = \frac{(44562,942)(18019,71) - (7369,929)(16756,581)}{(44562,942)(34041,135) - (7369,929)^{2}}$$

$$= \frac{679516465,9}{1462657290} = 0,465$$

$$\hat{Y} = a + b_{1}X_{1} + b_{2}X_{2}$$

$$a = (89,80 - (0,299 \times 91,81)) - (0,465 \times 90,89) = 20,110$$

$$\hat{Y} = 20,110 + 0,299 X_{1} + 0,465 X_{2}$$

Uji regresi ganda diperlukan dua macam jumlah kuadrat yaitu:

JK (reg) =
$$b_1$$
 ($\Sigma x_1 y$) + b_2 ($\Sigma x_2 y$)
= 0,299. (16756,581) + 0,465 (18019,71)
= 13384,9

JK (S) =
$$\Sigma y^2$$
 – JK (reg)
= 30180,194 – 13384,9
= 16795.29

Dari harga di atas diperoleh F_{hitung} sebesar :

Fo =
$$\frac{JK(\text{Re}g)/K}{JK(S)/N-K-1}$$

$$Fo = \frac{133849/2}{1679529/155 - 2 - 1} = 60,568$$

Dengan derajat kebebasan 2 : 153 pada taraf signifikansi 5% didapat $F_{tabel} = 3,90$. Ternyata $F_{hitung} > F_{tabel}$ yaitu 60,568 > 3,90. Dengan demikian dapat disimpulkan bahwa persamaan regresi multiple $\hat{Y} = 20,110 + 0,299 X_1 + 0,465 X_2$ berarti pada taraf signifikansi 5%.

Dengan harga-harga tersebut disajikan tabel Anava sebagai berikut :

ANAVA untuk Uji Signifikansi Regresi Ganda

Sumber	(dk	JK		KT	1	F _{hitung}	g	F _{tabel}
variasi			1						
Total	133	384.899	grace and	2	6692	2.450	60	.568	.000ª
Regresi	167	795.294		152	110).495			
Sisa	301	180.194		154		5/			

$$R_{y(1.2)} = \sqrt{\frac{b_1 \sum x_1 y + b_2 \sum x_2 y}{\sum y^2}}$$

$$= \sqrt{\frac{0,299 (16756,581) + 0,465 (18019,71)}{30180,194}}$$

$$= 0,666$$

$$R^2 = 0.443$$

Perhitungan Koefisien Korelasi Antar Variabel

1. Perhitungan koefisien korelasi Antara Variabel X₁ dengan variabel Y

$$r_{y1} = \frac{\sum x_1 y}{\sqrt{\left(\sum x_1^2\right)\left(\sum y^2\right)}}$$

$$r_{y1} = \frac{16756,581}{\sqrt{\left(44562,942\right)\left(30180,194\right)}}$$

$$= 0,457$$

Menguji Keberartian koefisien korelasi ryı

$$\mathbf{r} = \frac{r_{y_1}\sqrt{n-2}}{\sqrt{1-r_{y_1}^2}}$$
$$= \frac{0.457\sqrt{155-2}}{\sqrt{1-0.457^2}}$$
$$= 6.353$$

2. Perhitungan koefisien korelasi Antara Variabel X2 dengan Variabel Y

$$r_{y2} = \frac{\sum x_2 y}{\sqrt{(\sum x_2^2)(\sum y^2)}}$$

$$r_{y2} = \frac{18019,71}{\sqrt{(44562,942)(30180,194)}}$$

$$= 0,562$$
Menguji Keberartian koefisien korelasi r_{y2}

$$\mathbf{r} = \frac{r_{y2}\sqrt{n-2}}{\sqrt{1-r_{y2}^{2}}}$$

$$=\frac{0,562\sqrt{155-2}}{\sqrt{1-0,562^2}}$$

$$= 8,408$$

Perhitungan Korelasi Parsial dan Uji Keberartian Koefisien Korelasi Parsial

1. a. Perhitungan korelasi parsial antara variabel X₁ dengan variabel Y

$$ry_{12} = \frac{r_{y1} - r_{y2}r_{1.2}}{\sqrt{(1 - r_{y2}^{2})(1 - r_{1.2}^{2})}}$$

$$ry_{12} = \frac{0.457 - (0.562 \times 0.189)}{\sqrt{(1 - 0.562^{2})(1 - 0.189)}}$$

$$ry_{12} = \frac{0.351}{0.812}$$

$$= 0.431$$

Dari hasil perhitungan terlihat bahwa koefisien korelasi antara X_1 dan Y sebesar r=0.431 sedangkan r_{tabel} pada taraf signifikansi 5% dan N=40 sebesar 0.159 maka koefisien korelasi antara X_1 dengan Y dinyatakan berarti.

a. Uji keberartian korelasi parsial

$$t = \frac{r_{y,1,2}\sqrt{n-3}}{\sqrt{(1-r_{y,1,2})^2}}$$

$$t = \frac{0.431\sqrt{155-3}}{\sqrt{(1-0.431^2)}} = 5.899$$

Untuk harga t_{tabel} dengan dk = 155-3 = 153 diperoleh t_{tabel} = 2,026 sedangkan t_{hitung} = 5,899 maka t_{hitung} > t_{tabel} (2,752 > 1,975). Sesuai dengan kriteria penerimaan dan penolakan hipotesis, maka hipotesis Ha yang diajukan diterima pada taraf signifikan 5%. Dengan demikian dinyatakan terdapat korelasi yang berarti antara X_1 dengan Y bila X_2 dianggap konstan.

2. a. Perhitungan korelasi parsial antara X_2 , X_1 dengan Y digunakan rumus:

$$r_{y2.1} = \frac{r_{y2} - r_{y2}r_{1.2}}{\sqrt{(1 - r_{y1}^{2})(1 - r_{1.2}^{2})}}$$

$$r_{y2.1} = \frac{0,562 - (0,457x0,189)}{\sqrt{(1 - 0,457)(1 - 0,189)}}$$

$$r_{y2.1} = \frac{0,475}{0,873}$$

$$= 0,544$$

Dari hasil perhitungan terlihat bahwa koefisien korelasi antara X₁ dan Y sebesar r = 0.544 sedangkan r_{tabel} pada taraf signifikansi 5% dan N = 40sebesar 0,159 maka koefisien korelasi antara X₂ dengan Y dinyatakan berarti.

b. Uji keberartian korelasi parsial

$$t = \frac{r_{2,2}\sqrt{n-3}}{\sqrt{1-r^2}}$$

$$t = \frac{0,544\sqrt{155-3}}{\sqrt{(1-0,544^2)}}$$
= 3.114

Untuk harga t_{tabel} dengan dk = 155-3 = 153 diperoleh t_{tabel} = 1,975 sedangkan $t_{hitung} = 3,114$ maka $t_{hitung} > t_{tabel}$ (3,114 > 1,975). Sesuai dengan kriteria penerimaan dan penolakan hipotesis, maka hipotesis Ha yang diajukan diterima pada taraf signifikan 5%. Dengan demikian dinyatakan terdapat korelasi yang berarti antara X2 dengan Y bila X1 dianggap konstan.

PENGUJIAN HIPOTESIS

Regression

Variables Entered/Removed^a

Model	Variables Entered	Variables Removed	Method
1	Reward ^b		Enter

a. Dependent Variable: Resiliensi Siswa

b. All requested variables entered.

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	,457ª	,209	,204	12,493

a. Predictors: (Constant), Reward

ANOVA^a

Model		Sum of Squares	df	Mean Square	F	Sig.
	Regression	6300,818		6300,818	40,371	,000 ^b
1	Residual	23879,375	153	156,074		
	Total	30180,194	154			

a. Dependent Variable: Resiliensi Siswa

b. Predictors: (Constant), Reward

Coefficients^a

Model		Unstandardize	ed Coefficients	Standardized Coefficients	t	Sig.
		В	Std. Error	Beta		
1	(Constant)	55,280	5,526		10,004	,000,
1	Reward	,376	,059	,457	6,354	,000

a. Dependent Variable: Resiliensi Siswa

UNIVERSITAS MEDAN AREA

Regression

Variables Entered/Removed^a

Model	Variables Entered	Variables Removed	Method
1	Social Support ^b		Enter

- a. Dependent Variable: Resiliensi Siswa
- b. All requested variables entered.

Model Summary

Model	R	R Square	Adjusted R Square Std. Error of t	
				Estimate
1	,562ª	,316	,312	11,615

a. Predictors: (Constant), Social Support

ANOVA^a

Mod	el	Sum of Squares	D.C.	df	Mean Square	F	Sig.
1.100	Regression	9538,752	Λ	1	9538,752	70,704	
1	Residual	20641,442	U	153	134,911		·
	Total	30180,194	M	154			

- a. Dependent Variable: Resiliensi Siswa
- b. Predictors: (Constant), Social Support

Coefficients^a

Model		Unstandardize	Unstandardized Coefficients		t	Sig.
		В	Std. Error	Beta		
1	(Constant)	41,694	5,797		7,192	,000
1	Social Support	,529	,063	,562	8,409	,000

a. Dependent Variable: Resiliensi Siswa

Regression

Variables Entered/Removed^a

	variables Entered/Removed									
ľ	Model	Variables Entered	Variables Removed	Method						
1	1	Social Support, Reward ^b		Enter						

- a. Dependent Variable: Resiliensi Siswa
- b. All requested variables entered.

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

- 1. Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber
- Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

Model Summary

Model	R	R R Square Adjusted R Square		Std. Error of the
				Estimate
1	,666ª	,443	,436	10,512

a. Predictors: (Constant), Social Support, Reward

ANOVA^a

N	lodel (Sum of Squares	df	Mean Square	F	Sig.
	Regression	13384,899	2	6692,450	60,568	,000 ^b
1	Residual	16795,294	152	110,495		
	Total	30180,194	154			

a. Dependent Variable: Resiliensi Siswa

b. Predictors: (Constant), Social Support, Reward

Coefficients^a

Model		Unstandardized Coefficients			Standardized Coefficients	t	Sig.
		В	Std. E	rror	Beta		
	(Constant)	20,110	M	6,396		3,144	,002
1	Reward	,299	. A .	,051	,364	5,900	,000
	Social Support	,465	the second	,058	,493	8,007	,000

a. Dependent Variable: Resiliensi Siswa

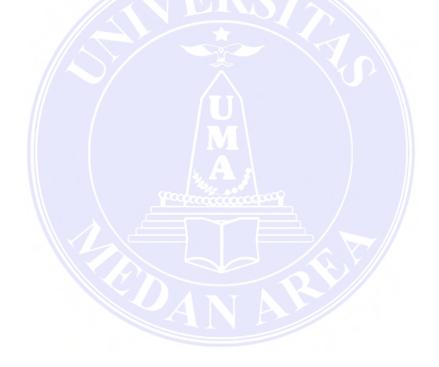
SKALA	REWARD
--------------	--------

Nama	:
Kelas	:

Petunjuk Pengisian:

- 1. Isilah identitas Saudara/i dengan benar dan lengkap pada kolom yang telah disediakan di atas.
- 2. Bacalah dengan seksama pernyataan pada skala yang telah disediakan.
- 3. Isilah semua pernyataan skala dengan jujur dan sesuai dengan kondisi diri Saudara/i karena tidak ada jawaban yang benar atau salah.
- 4. Isilih respon jawaban dengan memperhatikan jawaban yang paling menggambarkan diri Saudara/i dengan pilihan jawaban sebagai berikut:
 - SS : Jika Saudara/i Sangat Setuju dengan pernyataan tersebut
 - S : Jika Saudara/i Setuju dengan pernyataan tersebut
 - TS: Jika Saudara/i Tidak Setuju dengan pernyataan tersebut
 - STS: Jika Saudara/i Sangat Tidak Setuju dengan pernyataan tersebut

1.	Guru mengatakan kata-kata menyenangkan kepada saya seperti
	"pintar sekali", "wah hebat", ketika saya menjawab pertanyaan dengan
	benar.
2.	Guru mengatakan saya anak yang hebat ketika saya dapat
	menyelesaikan permasalahan dalam belajar dengan baik.
3.	Guru mengatakan "Terimakasih" setiap kali saya membantunya.
4.	Guru mengatakan "Terimakasih" setiap kali saya dapat
	menjelaskan cara penyelesaian soal kepada teman-teman.
5.	Guru mengatakan "benar", "Benar sekali", "Tepat sekali",
	"Pertahankan ya", ketika saya melakukan hal yang benar.
6.	Guru tidak mengucapkan selamat atas prestasi saya.
7.	Guru memarahi saya ketika membantunya.
8.	Guru mengabaikan bantuan yang saya tawarkan.
9.	Guru mengabaikan presentasi saya kepada teman-teman.
10.	Guru mengatakan "Kamu Malas kali", "Kamu tidak bekerja keras",
	ketika saya tidak membawa alat-alat pelajaran.


11. _____Guru Tersenyum ketika saya belajar dengan sungguh-sungguh.

UNIVERSITAS MEDAN AREA

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

12.	Guru menganggukan kepala ketika saya dapat menjawab
	pertanyaan dengan benar
13.	Guru bertepuk tangan ketika saya berani untuk menampilkan hasil
	karya saya kepada orang lain.
14.	Guru mengacungkan jempol ketika saya berhasil menyelesaikan
	tugas dengan baik.
15.	Guru memperhatikan dengan ramah atas kegiatan yang sedang
	saya lakukan, seperti pada saat belajar kelompok.
16.	Guru menjabat tangan ketika saya mendapatkan juara
17.	Guru menepuk bahu saya ketika saya belajar dengan sungguh-
	sungguh.
18.	Guru menepuk tangan untuk memotivasi saya agar saya berani
	tampil di depan teman-teman saya.
19.	Guru memberi kesempatan untuk beristirahat sejenak.
20.	Guru memberi kesempatan kepada peserta didik untuk makan
	setelah menyelesaikan tugas akhir pembelajaran.
21.	Guru memberikan nilai berupa angka yang tinggi ketika saya dapat
	menjawab hampir seluruh pertanyaan dengan benar.
22.	Guru memberikan piala dan hadiah alat tulis bagi siswa yang dapat
	ranking 10 besar setiap akhir semester.
23.	Guru melewati saya dengan begitu saja ketika melihat saya
	bersungguh-sungguh dalam belajar.
24.	Guru mengacungkan jari jempol ke bawah ketika saya
	menampilkan hasil karya saya kepada teman-teman.
25.	Guru tidak memeriksa tugas yang saya kumpulkan
26.	Guru menyampaikan materi dari tempat duduknya.
27.	Guru tidak bertanya kepada kami tentang kesulitan yang kami
	alami selama proses pembelajaran.
28.	Guru mengatakan "salah" ketika saya tidak mampu menjawab
	pertanyaan dengan lengkap.

29.	Guru	mengaba	ukan _.	jawaban	yang saya	sampaikan	dengan	tidak
	mengatakan	"benar"	atau	"salah"	melainkan	langsung	melemp	arkan
	pertanyaan ke	epada sisv	wa yar	ng lain.				
30.	Guru	membe	erikan	tugas	tambahan	ketika	saya	dapat
	menyelesaika	ın tugas d	engan	baik.				
31.	Guru	memberi	kan p	ertanyaa	n tambahan	untuk dija	wab sis	wa di
	akhir pembel	ajaran.						
32.	Guru	memberil	kan pe	kerjaan r	umah yang	banyak.		
33.	Guru	hanya me	enyam	paikan ra	nking 1-10	tanpa memb	eri hadi	ah.
34.	Guru	tidak mer	nyamp	aikan rar	ngking 10 be	esar.		
35.	Guru	tidak mer	nberik	kan nilai j	pada tugas y	ang telah di	selesaika	an.

SKALA SOCIAL SUPPORT

Nama	:
Kelas	:

Petunjuk Pengisian:

- 1. Isilah identitas Saudara/i dengan benar dan lengkap pada kolom yang telah disediakan di atas.
- 2. Bacalah dengan seksama pernyataan pada skala yang telah disediakan.
- 3. Isilah semua pernyataan skala dengan jujur dan sesuai dengan kondisi diri Saudara/i karena tidak ada jawaban yang benar atau salah.
- 4. Isilih respon jawaban dengan memperhatikan jawaban yang paling menggambarkan diri Saudara/i dengan pilihan jawaban sebagai berikut:

SS: Jika Saudara/i Sangat Setuju dengan pernyataan tersebut

S : Jika Saudara/i Setuju dengan pernyataan tersebut

TS: Jika Saudara/i Tidak Setuju dengan pernyataan tersebut

STS: Jika Saudara/i Sangat Tidak Setuju dengan pernyataan tersebut

1.	Guru bertanya tentang pemanaman saya di awai dan aknir
	pembelajaran.
2.	Guru memperhatikan siswa menyampaikan pendapatnya.
3.	Guru memberi kesempatan kepada saya untuk menyampaikan
	kesulitan yang dirasakan ketika belajar.
4.	Guru memberi bantuan kepada siswa ketika membutuhkan
	bantuan untuk menyelesaikan permasalahan belaajarnya.
5.	Guru bertanya secara langsung alasan saya tidak bisa mengikuti
	pembelajaran dengan baik.
6.	Guru memberi kesempatan kepada siswa untuk menjelaskan
	perasaan mereka selama belajar.
7.	Guru langsung menyampaikan materi pembelajaran tanpa
	memberi kesempatan kepada saya untuk bertanya.
8.	Guru mengabaikan kesulitan yang saya rasakan.
9.	Guru memeriksa nilai siswa lain disaat kami mempresentasikan
	hasil kerja kelompo.
10.	Guru bermain hp ketika siswa menyampaikan pendapatnya.

UNIVERSITAS MEDAN AREA

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

11.	Guru melakukan kegiatan yang lain (bermain hp, keluar kelas)
	ketika saya sedang menyelesaikan tugas yang diberikannya
12.	Guru memberi pujian, dan reward lainnya ketika siswa dapat
	melakukan kesepakatan kelas dengan baik selama proses pembelajaran
	berlangsung.
13.	Guru membandingkan saya dengan siswa lain yang lebih pintar
	dengan nada mengejek
14.	Guru memberi alat tulis untuk siswa yang kurang mampu agar
	dapat mengikuti proses pembelajaran dengan baik.
15.	Guru memberi paket internet untuk siswa kurang mampu agar
	dapat mengikuti proses pembelajaran secara daring dengan baik.
16.	Guru menyediakan berbagai media yang menarik agar siswa
	mudah memahami proses pembelajaran dengan baik.
17.	Guru mengulang kembali materi yang telah dipelajari dipertemuan
	yang lalu.
18.	Guru menjelaskan kembali materi yang sulit dipahami siswa
	dengan cara sederhana yang mudah di pahami siswa.
19.	Guru memarahi siswa yang tidak membawa alat tulis lengkap.
20.	Guru mengabaikan keluhan siswa yang tidak dapat mengikuti
	proses pembalajaran secara daring.
21.	Guru menyuruh siswa untuk mencari buku dan materi
	pembelajaran sendiri.
22.	Guru tidak mengulang kembali materi pembelajaran yang telah
	disampaikannya.
23.	Guru memberi kata-kata mutiara ketika saya mengalami rasa
	bosan pada saat belajar
24.	Guru menasehati saya ketika saya tidak mengumpulkan tugas.
25.	Guru memberi saran agar saya belajar lebih giat di rumah tidak
	hanya belajar di sekolah.
26.	Guru menampilkan video melalui infocus yang menarik
27.	Guru menggunakan game edukatif dalam proses pembelajaran

28.	Guru menggunakan power point untuk memperjelas mater
	pembelajaran.
29.	Guru menggunkan beberapa platform seperti Whatsapp, zoom
	meeting, google form untuk proses pembelajaran yang dilakukan secara
	daring.
30.	Guru memberi kesempatan kepada siswa untuk meningkatkan rasa
	percaya diri dengan cara mengupload tugas yang dikerjakan di platform
	sosial media, seperti Youtube, Instagram, Facebook, atau Whatsapp.
31.	Guru menggunakan aplikasi zoom untuk melakukan kegiatar
	pembelajaran selama daring.
32.	Guru memarahi saya saat saya ribut di kelas
33.	Guru memberi surat panggilan kepada orang tua karena siswa
	sering tidak masuk kelas.
34.	Guru mengkritik pedas ketika saya terlambat hadir di sekolah
35.	Guru hanya menggunakan buku sebagai media pembelajaran.

SKALA RESILIENSI BELAJAR

Nama	•	
Kelas	:	

Petunjuk Pengisian:

- 5. Isilah identitas Saudara/i dengan benar dan lengkap pada kolom yang telah disediakan di atas.
- 6. Bacalah dengan seksama pernyataan pada skala yang telah disediakan.
- 7. Isilah semua pernyataan skala dengan jujur dan sesuai dengan kondisi diri Saudara/i karena tidak ada jawaban yang benar atau salah.
- 8. Isilih respon jawaban dengan memperhatikan jawaban yang paling menggambarkan diri Saudara/i dengan pilihan jawaban sebagai berikut:

SS: Jika Saudara/i Sangat Setuju dengan pernyataan tersebut

S : Jika Saudara/i Setuju dengan pernyataan tersebut

TS: Jika Saudara/i Tidak Setuju dengan pernyataan tersebut

STS: Jika Saudara/i Sangat Tidak Setuju dengan pernyataan tersebut

1.	Saya merasa senang ketika menyelesaikan tugas yang diberikan guru
2.	Saya merasa nyaman ketika mengerjakan tugas dari guru
3.	Saya menyelesaikan tugas dengan konsentrasi tinggi meskipun proses
	pembelajaran dilakukan secara daring dan luring.
4.	Saya merasa gugup ketika guru menyuruh saya untuk menjelaskan cara
	menyelesaikan soal yang diberikan guru kepada teman-teman sekelas.
5.	Saya merasa terganggu belajar jika ada suara-suara lain yang terdengar seperti
	ketika disekolah terdengar suara kendaraan, dan ketika dirumah terdengar suara anggota
	keluarga yang sedang bercakap-cakap.
6.	Saya menyelesaikan tugas disaat saya tidak mengalami emosi negatif seperti
	lelah, stress, dan marah.
7.	Saya mencari kegiatan baru seperti mendengarkan musik, meditasi untuk
	mengurangi emosi negatif seperti stress, marah dan bosan pada saat belajar baik dilakukan
	secara daring atau luring.
8.	Saya malas mengerjakan tugas dari guru karena terlalu banyak dan susah untuk
	diselesaikan.
9.	Saya takut jika saya ditunjuk guru untuk menjelaskan cara menyelesaikan tugas
	yang diberikan guru.
10.	Saya tidak mau mengikuti pembelajaran dengan baik dan menyelesaikan tugas
	yang diberikan guru karena saya pernah mendapatkan nilai dan perlakuan buruk dari guru.
11.	Saya marah kepada orang yang ada disekitar saya ketika saya mendapatkan nilai
	dan perlakuan buruk dari guru

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

⁻⁻⁻⁻⁻

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

 $^{2.\} Pengutipan\ hanya\ untuk\ keperluan\ pendidikan,\ penelitian\ dan\ penulisan\ karya\ ilmiah$

12.	Meskipun saya_tidak bisa menjawab pertanyaa dari soal-soal yang diberikan
	guru, saya tetap menyelesaikan tugas tersebut karena saya merasa guru lebih menghargai
	usaha siswa dalam menyelesaikan tugas tersebut.
13.	Saya yakin dapat menghadapi dan menyelesaikan permasalahan dalam belajar
	meskipun keadaan proses pembelajaran dilakukan secara daring dan luring.
14.	Saya merasa jawaban yang saya sampaikan banyak yang tidak benar.
15.	Saya merasa hasil belajar saya tidak akan baik karena saya memiliki kelemahan
	dalam mengingat materi yang diajarkan.
16.	Saya mampu menemukan permasalahan yang mengganggu diri saya
17.	Saya menemukan cara mengatasi mudah lupa dalam mengingat pelajaran dengan
	cara mencatat penjelasan guru.
18.	Tugas saya tidak selesai karena saya tidak mengetahui cara menyelesaikannya
19.	Saya tidak dapat nilai yang baik karena teman saya salah memberi contekan
20.	Saya tidak dapat rangking 10 besar karena saya tidak mengikuti proses
	pembelajaran dengan baik.
21.	Saya tidak menemukan penyebab saya malas belajar
22.	Saya tidak menemukan cara penyelasaian tugas karena saya merasa tugas yang
	diberikan guru terlalu sulit untuk diselesaikan.
23.	Saya tidak memahami penjelasan guru karena proses pembelajaran yang
	dilakukan guru sangat membosankan.
24.	Saya mendapatkan nilai rendah karena proses pembelajaran dilakukan dengan
	daring dan luring.
25.	Saya merasa guru marah karena intonasi suara guru meninggi dan sering
	memukul benda-benda disekitarnya.
26.	Saya tidak peduli dengan tindakan guru yang menjelaskan materi dengan nada
	tinggi dan memukul benda-benda disekitar.
27.	Saya merasa kalau saya belajar dengan baik akan mampu mencapai cita – cita
	saya
28.	Saya meminta guru akan menjelaskan kembali agar saya dapat memahami
	materi yang diajarkan guru , dengan demikian saya akan mampu menyelesaikan tugas dengan
	baik
29.	Saya merasa kesuksesan hanya untuk orang yang memiliki uang yang banyak
30.	Saya tidak dapat menemukan solusi dalam menyelesaikan kesulitan belajar yang
	saya alami.
31.	Pada saat saya gagal saya memandang hal tersebut sebagai keberhasilan yang
	tertunda.
32.	Saya terpacu untuk giat belajar atas nilai rendah yang saya dapatkan
33.	Saya akan lebih giat belajar meskipun gagal

34.		Saya	cendrung	putus	asa	untuk	menggapai	prestasi	belajar	melampaui	teman
	yang lain	1.									
35.		Saya	tidak mem	niliki se	emar	igat be	lajar kalau ti	dak men	nperoleh	motivasi.	

PEDOMAN WAWANCARA

I. Wawancara dengan Kepala Sekolah

- a. Masa jabatan menjadi Kepala Sekolah SMA Negeri 1 Kisaran Kabupaten Asahan.
- b. Visi, misi, dan tujuan sekolah.
- c. Cara kepala sekolah mewujudkan visi, misi, dan tujuan sekolah.
- d. Keadaan siswa selama pandemi COVID 19.
- e. Cara Kepala sekolah mengatasi permasalahan yang timbul selama COVID 19.
- f. Hambatan yang dialami kepala sekolah pada saat pergantian sistem pembelajaran selama pandemi COVID 19.

II. Wawancara dengan Guru

- a. Masa jabatan menjadi Guru di SMA Negeri 1 Kisaran Kabupaten Asahan.
- b. Perilaku positif yang ditunjukkan siswa pada saat proses pembelajaran.
- c. Perilaku negatif yang ditunjukkan siswa pada saat proses pembelajaran.
- d. Cara guru mengatasi perilaku negatif tersebut.
- e. Cara guru meningkatkan perilaku positif tersebut.
- f. Cara guru meningkatkan minat belajar peserta didik.

III. Wawancara dengan Siswa

- a. Keadaan peserta didik.
- b. Pelajaran yang tidak disukai.
- c. Guru yang tidak disukai
- d. Alasan tidak menyukainya.
- e. Alasan ingin bersekolah.
- f. Penyebab malas untuk bersekolah.
- g. Penyebab malas belajar.
- h. Yang kamu sukai selama disekolah.
- i. Pelajaran yang disukai
- j. Cara mengatasi masalah pada saat belajar.

DOKUMENTASI

PRA PENELITIAN

MADING PENUH DENGAN HASIL KARYA SISWA

UJI VALIDITAS AITEM SKALA DI KELAS X

PELAKSANAAN PENELITIAN

Program Doktor : Ilmu Pertanian Jl. Setia Budi No. 79-B Tj. Rejo Medan Sunggal Kota Medan Sumatera Utara 20112 Indonesia Telp. (061) 8201994 Fax. (061) 8226331

Nomor ; 455 /PPS-UMA/D/01/IV/2022 23 April 2022

Lampiran :-

Hal : Permohonan Izin Survey dan Observasi

Kepada Yth. :

SMA Negeri 1 Kisaran

Jalan Madong Lubis, No. 5, Kisaran Kota Kecamatan Kisaran Timur, Kabupaten Asahan

Tempat

Dengan hormat,

Sehubungan dengan penyusunan Tesis mahasiswa Pascasarjana Program Studi Magister Psikologi Universitas Medan Area T.A. 2021/2022, maka dengan ini kami mengajukan kepada Bapak/ibu kiranya dapat menerima mahasiswa/i kami berikut ini:

No	Nama	NPM	Program Studi
1	Cynthia Fitri Kautsar	201804015	Magister Psikologi

Untuk dapat melaksanakan survey dan observasi di Instansi yang Bapak/Ibu Pimpin. Adapun untuk pelaksanaan survey dan observasi tersebut disesuaikan dengan jadwal yang telah ditentukan oleh Instansi yang Bapak/Ibu Pimpin.

Demikian permohonan ini kami sampaikan, atas perhatian dan kerjasamanya kami ucapkan terima kasih.

Direktur,

Dr. Ir. Retna Astuti K, MS

Tembusan:

- Ketua Program Studi M.Psi
- 2. Pertinggal

Kampus Utama: Jalan Kolam No. 1 Medan Estate Telp. (061) 7366878 Fax. (061) 7366998 Medan 20223

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

Document Accepted 7/6/24

2. Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah

UNIVERSITAS MEDAN AREA PASCASARJANA

Program Magister : Ilmu Administrasi Publik - Agribisnis - Ilmu Hukum - Psikologi Program Doktor : Ilmu Pertanian

Jl. Setia Budi No. 79-B Tj. Rejo Medan Sunggal Kota Medan Sumatera Utara 20112 Indonesia Telp. (061) 8201994 Fax. (061) 8226331

Nomor : 915 /PPS-UMA/D/01/VIII/2022

15 Agustus 2022

Hal : Izin Penelitian

Kepada Yth.:

SMA Negeri 1 Kisaran Jalan Madong Lubis, No. 5, Kisaran Kota, Kecamatan Kisaran Timur, Kabupaten Asahan Di -

Medan

Dengan hormat,

Sehubungan dengan adanya Tugas Akhir mahasiswa Program Magister Psikologi Universitas Medan Area, kami mohon kesediaan Saudara untuk memberikan izin kepada mahasiswa yang tersebut namanya di bawah ini :

Nama : Cynthia Fitri Kautsar

NPM : 201804015 Program Studi : Magister Psikologi

Konsentrasi : Pendidikan

Untuk melaksanakan pengambilan data di tempat yang Saudara pimpin sebagai bahan melengkapi tugas-tugas penulisan Tesis pada Program Magister Psikologi Universitas Medan

Area.

Disamping itu perlu kami sampaikan bahwa mahasiswa yang tersebut diatas mengambil judul "Pengaruh Reward dan Social Support Guru terhadap Resiliensi Belajar Siswa di SMA Negeri I Kabupaten Asahan".

Demikian disampaikan, atas bantuan dan kerjasama yang baik diucapkan terimakasih.

A 4

or. Ir. Retna Astuti K, MS

Tembusan:

1. Ketua Program Studi - M.Psi

Kampus Utama : Jalan Kolam No. 1 Medan Estate Telp. (061) 7366878 Fax. (061) 7366998 Medan 20223

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

- 2. Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
- 3. Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

UNIVERSITAS MEDAN AREA PASCASARJANA

Program Magister : Ilmu Administrasi Publik - Agribisnis - Ilmu Hukum - Psikologi Program Doktor : Ilmu Pertanian

Jl. Setia Budi No. 79-B Tj. Rejo Medan Sunggal Kota Medan Sumatera Utara 20112 Indonesia Telp. (061) 8201994 Fax. (061) 8226331

Nomor : 915 /PPS-UMA/D/01/VIII/2022

15 Agustus 2022

Hal : Pengambilan Data

Kepada Yth.:

SMA Negert 1 Kisaran

Jalan Madong Lubis, No. 5, Kisarau Kota, Kecamatan Kisaran Timur, Kabupaten Asahan Di -

Medan

Dengan hormat,

Sehubungan dengan adanya Tugas Akhir mahasiswa Program Magister Psikologi Universitas Medan Area, kami mohon kesediaan Saudara untuk memberikan izin kepada mahasiswa yang tersebut namanya di bawah ini:

Nama : Cynthia Fitri Kautsar

NPM : 201804015 Program Studi : Magister Psikologi

Konsentrasi : Pendidikan

Untuk melaksanakan pengambilan data di tempat yang Saudara pimpin sebagai bahan melengkapi tugas-tugas penulisan Tesis pada Program Magister Psikologi Universitas Medan Area.

Disamping itu perlu kami sampaikan bahwa mahasiswa yang tersebut diatas mengambil judul "Pengaruh Reward dan Social Support Guru terhadap Resiliensi Belajar Siswa di SMA Negeri 1 Kabupaten Asahan".

Demikian disampaikan, atas bantuan dan kerjasama yang baik diucapkan terimakasih.

MARKET

Frof, Dr. Ir. Retna Astuti K, MS

Tembusan:

Ketua Program Studi – M.Psi

Kampus Utama : Jalan Kolam No. 1 Medan Estate Telp. (061) 7366878 Fax. (061) 7366998 Medan 20223

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

Document Accepted 7/6/24

 $2.\ Pengutipan\ hanya\ untuk\ keperluan\ pendidikan,\ penelitian\ dan\ penulisan\ karya\ ilmiah$

PEMERINTAH PROVINSI SUMATERA UTARA DINAS PENDIDIKAN CABANG DINAS WILAYAH V SMA NEGERI I KISARAN

NSS : 301078002006

NPSM: 10204064

II. Madong Lubis No. 5 Kode Pos. 21223 Kec, Kota Kisaran Timur Kab. Asahan Website: www.smansalukisaran.sch.id a-mail: smansakis@gmail.com

SURAT KETERANGAN

Nomor: 422 / 775 / 2023

Yang bertanda tangan dibawah ini

Nama

RAMLAN, S.Pd

NIP

19660212 199101 1 001

Pangkat / Golongan

Pembina / IV.n

Jabatan

Kepala SMA Negeri 1 Kisaran

Menerangkan bahwa Mahasiswa Universitas Medan Area Program Pascasarjana

Name

CYNTHIA FITRI KAUTSAR

NPM

201804015

Prog. Studi

Magister Psikologi

Judul Tesis

"Pengaruh Reward dan Social Support Guru Terhadap

Resiliensi Belajar Siswa di SMA Negeri I Kabupaten

Asahan.".

Benar telah selesai melaksanakan Penelitian dalam rangka Penyusunan Tesis di SMA Negeri 1 Kisaran pada tanggal 23 April 2022 – 15 September 2023.

Demikian Surat Keterangan ini diperbuat untuk dapat dipergunakan sebagaimana mestinya.

Kusaran, 15 September 2023 Kunaha Sekolah

NIP. 19560212 199101 1 001

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber