PENGARUH PEMBERIAN AIR LERI DAN BERBAGAI JENIS MEDIA TANAM TERHADAP PRODUKSI MICROGREENS TANAMAN SAWI (Brassica juncea L.)

SKRIPSI

OLEH:

DIPO RIDHO UTOMO 208210054

PROGRAM STUDI AGROTEKNOLOGI FAKULTAS PERTANIAN UNIVERSITAS MEDAN AREA MEDAN 2024

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

PENGARUH PEMBERIAN AIR LERI DAN BERBAGAI JENIS MEDIA TANAM TERHADAP PRODUKSI MICROGREENS TANAMAN SAWI (Brassica juncea L.)

SKRIPSI

Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Di Program Studi Agroteknologi Fakultas Pertanian Universitas Medan Area

OLEH:
DIPO RIDHO UTOMO
208210054

PROGRAM STUDI AGROTEKNOLOGI FAKULTAS PERTANIAN UNIVERSITAS MEDAN AREA MEDAN 2024

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber 2. Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah

JUDUL SKRIPSI : PENGARUH PEMBERIAN AIR LERI DAN BERBAGAI

JENIS MEDIA TANAM TERHADAP PRODUKSI MICROGREENS TANAMAN SAWI (Brassica Juncea L.)

NAMA : DIPO RIDHO UTOMO

NPM : 208210054

PROGRAM STUDI : AGROTEKNOLOGI

FAKULTAS : PERTANIAN

Disetujui Oleh : Pembimbing

Ir. Ellen Lumisar Panggabean, MP

Pembimbing

Diketahui Oleh:

Panjang Hernosa, SP., M.Sc

Dekan

Angga Ade Sahfitra, SP. MSe

Ketua Program Studi

Tanggal Lulus: 25 September 2024

HALAMAN PERNYATAAN ORISINILITAS

Saya menyatakan bahwa skripsi yang saya susun, sebagai syarat memperoleh gelar serjana merupakan hasil karya tulis saya sendiri. Adapun bagian-bagian tertentu dalam penulisan skripsi ini yang saya kutip dari hasil karya orang lain telah dituliskan sumbernya secara jelas sesuai dengan norma, kaidah, dan etika penulisan ilmiah.

Saya bersedia menerima sanksi pencabutan gelar akademik yang saya peroleh dan sanksi-sanksi lainnya dengan peraturan yang berlaku, apabila di kemudian hari ditemukan adanya plagiat dalam skripsi ini.

HALAMAN PERNYATAAN PERSETUJUAN PUBLIKASI SKRIPSI UNTUK KEPENTINGAN AKADEMIS

Sebagai civitas akademik Universitas Medan Area, saya yang bertanda tangan di bawah ini:

Nama : Dipo Ridho Utomo

NIM : 208210054

Program Studi: Agroteknologi

Fakultas : Pertanian

Jenis Karya : Skripsi

Demi pengembangan ilmu pengetahuan, menyetujui untuk memberikan kepada Universitas Medan Area Hak Bebas Royalti Nonekslusif (Non-excllusive Royalty Free Right) atas karya ilmiah saya yang berjudul: Pengaruh Pemberian Air Leri Dan Berbagai Jenis Media Tanam Terhadap Produksi Microgreens Tanaman Sawi (Brassica juncea L.). Dengan hak bebas royalti nonekslusif ini Universitas Medan Area berhak menyimpan, mengalih media atau formatkan, mengelola dalam bentuk pangkalan data (data base) merawat dan mempublikasikan skripsi saya selama tetap mencantumkan nama saya sebagai penulis/ pencipta dan sebagai pemilik Hak Cipta.

Dibuat

: Mcdan

Pada Tanggal: 4 November, 2024

Yang menyatakan

Dipo Ridho Utomo

ABSTRAK

Microgreens dikenal sebagai tanaman muda yang dipanen dan dikonsumsi pada awal masa penanaman. Usia panen *Microgreens* umumnya berkisar pada 7 -14 hari setelah tanam. Kajian ini bertujuan untuk Mengetahui pengaruh pemberian air leri dalam meningkatkan pertumbuhan dan produksi Microgreens. Mengetahui bagaimana pengaruh media tanam terhadap pertumbuhan dan produksi pada Microgreens. Mengetahui kombinasi air leri dan jenis media tanam terbaik terhadap produksi Microgreens. Penelitian ini menggunakan Rancangan Acak Lengkap (RAL) Faktorial dengan 2 faktor perlakuan, 3 ulangan 10 sampel tanaman. Berdasarkan hasil penelitian pada perlakuan pemberian air leri menunjukkan hasil sangat nyata terhadap panjang akar sedangkan pada persentase hidup tanaman, tinggi tanaman, jumlah daun, berat segar pertanaman, dan berat segar per plot menunjukkan tidak nyata pada Microgreens. Pada perlakuan berbagai jenis media tanam menunjukkan hasil berpengaruh sangat nyata terhadap persentase hidup tanaman, tinggi tanaman, jumlah daun, berat segar perplot dan panjang akar, sedangkan pada berat segar pertanaman menunjukan hasil yang tidak nyata pada Microgreens. Pada perlakuan kombinasi air leri dan berbagai jenis media tanam menunjukan hasil sangat nyata terhadap berat segar perplot dan panjang akar sedangkan terhadap persentase hidup tanaman, tinggi tanaman, jumlah daun, berat segar pertanaman menunjukan hasil yang tidak nyata pada Microgreens.

Kata kunci: Microgreens, Air Leri, Media Tanaman

ABSTRACT

Microgreens are known as young plants that are harvested and consumed at the early stage of their growth. The harvest age of Microgreens generally ranges from 7 to 14 days after planting. This research aimed to determine the effect of using rice wash water in enhancing the growth and production of Microgreens. To understand how the growing medium affects the growth and production of Microgreens. To identify the best combination of rice wash water and types of growing media for Microgreens production. This research Factorial Completely Randomized Design (CRD) with 2 treatment factors, 3 replications, and 10 plant samples. Based on the research results, the treatment with rice wash water showed a very significant effect on root length, while the percentage of plant survival, plant height, number of leaves, fresh weight per plant, and fresh weight per plot showed no significant effect on Microgreens. The treatment with various types of planting media showed a very significant effect on the percentage of plant survival, plant height, number of leaves, fresh weight per plot, and root length, while the fresh weight per plant showed no significant effect on Microgreens. The treatment with a combination of rice wash water and various types of planting media showed a very significant effect on fresh weight per plot and root length, while the percentage of plant survival, plant height, number of leaves, and fresh weight per plant showed no significant effect on Microgreens.

Keywords: Microgreens, Leri Water, Plant Media

RIWAYAT HIDUP

Dipo Ridho Utomo lahir pada tanggal 30 November 2001 di Desa Stabat Lama, Kabupaten Langkat, Provinsi Sumatera Utara. Penulis Lahir dari pasangan Warimin dan Suriati. Penulis merupakan anak terakhir dari tiga bersaudara.

Penulis menyelesaikan Pendidikan Sekolah Dasar di SDN

053977 Kecamatan Wampu, Kabupaten Langkat, Provinsi Sumatera Utara, lulus pada tahun 2015. Kemudian melanjutkan pendidikan Sekolah Menengah Pertama dan lulus pada tahun 2017 di SMP Negeri 4 Stabat, Kecamatan Wampu, Kabupaten Langkat, Provinsi Sumatera Utara. Setelah itu melanjutkan Pendidikan Sekolah Menengah Atas sampai pada tahun 2020 di SMA Negeri 1 Stabat Kecamatan Stabat, Kabupaten Langkat, Provinsi Sumatera Utara. Pada tahun 2020 penulis melanjutkan Pendidikan Sarjana di Universitas Medan Area pada Program Studi Agroteknologi Fakultas Pertanian.

Selama menjadi mahasiswa, penulis pernah mengikuti Organisai Himpunan Mahasiswa Islam (HMI) dengan jabatan Penelitian, Pengembangan dan Penanggung jawab (PPPA) dan melaksanakan Praktek Kerja Lapangan (PKL) di PT. Socfindo Kebun Aek Loba dan Magang di PT. Betami Aceh Tamiang.

KATA PENGANTAR

Puji dan syukur saya ucapkan kehadiran Allah Subhanahuwata'ala yang telah memberikan rahmat dan karunia-Nya sehingga penulis dapat menyelesaikan ini dengan judul "Pengaruh Pemberian Air Leri Dan Berbagai Jenis Media Tanam Terhadap Produksi *Microgreens* Tanaman Sawi (*Brassica juncea* L.)".

Skripsi ini merupakan salah satu syarat untuk melaksanakan penelitian tugas akhir di Fakultas Pertanian Universitas Medan Area. Penulis mengucapkan terimakasih kepada banyak pihak yang telah banyak membantu dan mendukung dalam kesempurnaan penulisan skripsi ini. Secara khusus penulis mengucapkan terima kasih kepada :

- Bapak Dr. Siswa Panjang Hernosa, SP, M.Si selaku Dekan Fakultas Pertanian Universitas Medan Area.
- Bapak Angga Ade Sahfitra, SP., M.Sc selaku Ketua Prodi Agroteknologi Fakultas Pertanian Universitas Medan Area.
- 3. Ir. Ellen Lumisar Panggabean, MP selaku Komisi Pembimbing yang telah membimbing, memberikan saran, masukan dan memperhatikan selama penyusunan skripsi ini.
- Seluruh Dosen di Program Studi Agroteknologi, Fakultas Pertanian Universitas Medan Area yang telah memberikan banyak ilmu kepada saya selama masa perkuliahan.
- Kedua Orang tua ku tercinta Ayahanda Warimin dan Ibunda Suriati yang selalu memberikan dukungan doa, materiil dan moral kepada saya dalam menyelesaikan penulisan skripsi ini.

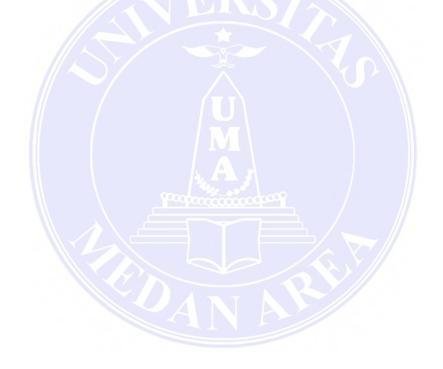
- 6. Abangda Andi Purnama Saputra S.E., dan kakak ku tercinta Erni Suwarda Ningsih S.Pd., dan Venty Hartini S.Pd, yang selalu memberikan semangat dan doa kepada saya dalam menyelesaikan skripsi ini.
- 7. Teman-teman mahasiswa Fakultas Pertanian Universitas Medan Area terutama teman-teman Agroteknologi Stambuk 2020 yang telah memberikan dukungan kepada saya.
- 8. Kepada teman-teman kontrakan saya yang telah memberikan dukungan, selalu membantu dan menghibur saya ketika skripsi.

Penulis menyadari bahwa skripsi ini masih jauh dari kesempurnaan baik dalam penyajian maupun tata bahasa. Penulis memohon maaf dan menerima kritikan serta saran yang bersifat membangun untuk kesempurnaan skripsi ini. Penulis berharap semoga skripsi ini dapat memberikan manfaat bagi kita semua. Akhir kata penulis ucapkan terimakasih.

X

Medan, 25 September 2024

(Dipo Ridho Utomo)


DAFTAR ISI

	Halam	an
HALA	MAN PENGESAHAN	iii
HALA	MAN PERNYATAAN ORISINILITAS	iv
HALA	MAN PERNYATAAN PERSETUJUAN	. v
ABSTI	RAK	vi
ABSTI	RACT	vii
RIWA	YAT HIDUPv	iii
KATA	PENGANTAR	ix
	AR GAMBARx	
	AR TABELx	
	AR LAMPIRAN	
I. PI	ENDAHULUAN	. 1
1.1	Latar Belakang	
1.2	Rumusan Masalah	
1.3	Tujuan	. 4
1.4	Manfaat	
1.5	Hipotesis	
II. TI	INJAUAN PUSTAKA	6
2.1	Microgreens	6
2.2	Tanaman Sawi	
2.3	Air Leri	
2.4	Media Tanam	9
2.4	4.1 Cocopeat	. 9
2.4	4.2 Arang Sekam	11
2.4	4.3 Kompos	12
III.	METODOLOGI PENELITIAN	14
3.1.	Waktu dan Tempat Penelitian	14
3.2.	Bahan dan Alat Penelitian	14
3.3.	Metode Penelitian	14
3.4.	Metode Analisi Data	16

3.5. Pel	aksanaan Penelitian	. 16
3.5.1.	Persiapan Media Tanam	. 16
3.5.2.	Penanaman	. 17
3.5.3.	Penyiraman	. 18
3.5.4.	Pemberian Air Leri	. 18
3.5.5.	Pemanenan	. 19
3.6. Par	rameter Pengamatan	. 19
3.6.1.	Persentase hidup Kecambah	. 19
3.6.2.	Pengukuran Tinggi Tanaman (cm)	. 19
3.6.3.	Jumlah Daun (helai)	. 20
3.6.4.	Berat Segar/Tanaman (g)	. 20
3.6.5.	Berat Segar / Plot (g)	
3.6.6.	Panjang akar (cm)	. 20
IV. HAS	SIL DAN PEMBAHASAN	. 21
4.1 Per	rsentase Hidup Kecambah	. 21
4.2 Per	ngukuran Tinggi Tanaman (cm)	. 24
4.3 Jur	nlah Daun (helai)	. 28
4.4 Be	rat Segar/Tanaman (g)	. 30
	rat Segar / Plot (g)	
4.6 Par	njang akar (cm)	. 35
V. KESIN	MPULAN DAN SARAN	. 39
5.1 Ke	simpulan	. 39
5.2 Sai	ran	. 39
DAFTAR P	PUSTAKA	. 40
LAMPIRA	N	45

DAFTAR GAMBAR

No	Keterangan	Halaman
1.	Gambar 2.1. Microgreens Sawi	6
2.	Gambar 2.2. Air ler atau Air cucian beras	8
3.	Gambar 2.3. Cocopeat	10
4.	Gambar 2.4. Arang sekam	11
5.	Gambar 2.5. Kompos	13
6.	Gambar 3.1. Persiapan media tanam	17
7.	Gambar 3.2. Penanaman	17
8.	Gambar 3.3. Penyiraman	18
9.	Gambar 3.4. Pemberian Air Leri	18
10.	Gambar 3.5. Pemanenan	19

DAFTAR TABEL

No	Keterangan	Halaman
1.	Rangkuman Uji Sidik Ragam Persentase Hidup Kecambah	21
2.	Rangkuman Uji Beda Rata-Rata Persentase Hidup Kecambah	23
3.	Rangkuman Uji Sidik Ragam Tinggi Tanaman	24
4.	Rangkuman Uji Beda Rata-Rata Tinggi Tanaman	27
5.	Rata-Rata Jumlah Daun Tanaman (Helai)	28
6.	Hasil Uji Sidik Ragam Berat Segar Pertanaman Microgreens Sawi.	30
7.	Hasil Uji Sidik Ragam Berat Segar Microgreens Sawi	31
8.	Uji Beda Rata-Rata Berat Segar Tanaman Plot/Gram	33
9.	Hasil Analisi Sidik Ragam Panjang Akar Tanaman	35
10.	Uji Beda Rata-Rata Panjang Akar Tanaman	37

DAFTAR LAMPIRAN

No	Keterangan	Halaman
1.	Tabel Jadwal Kegiatan Penelitian	45
2.	Denah Penelitian	46
3.	Denah Plot	47
4.	Tabel Rata-Rata Persentase hidup kecambah hari ke 1	48
5.	Tabel Rata-Rata Persentase hidup kecambah hari ke 2	48
6.	Tabel ANOVA Persentase hidup kecambah hari ke 2	49
7.	Tabel Rata-Rata Persentase hidup kecambah hari ke 3	49
8.	Tabel ANOVA Persentase hidup kecambah hari ke 3	50
9.	Tabel Rata-Rata Persentase hidup kecambah hari ke 4	50
10	. Tabel ANOVA Persentase hidup kecambah hari ke 4	51
11.	. Tabel Rata-Rata Persentase hidup kecambah hari ke 5	51
12	. Tabel ANOVA Persentase hidup kecambah hari ke 5	52
13	. Tabel Rata-Rata Persentase hidup kecambah hari ke 6	52
14	. Tabel ANOVA Persentase hidup kecambah hari ke 6	53
15	. Tabel Rata-Rata Persentase hidup kecambah hari ke 7	53
16	. Tabel ANOVA Persentase hidup kecambah hari ke 7	54
17	. Tabel Rata-Rata Persentase hidup kecambah hari ke 8	54
18	. Tabel ANOVA Persentase hidup kecambah hari ke 8	55
19	. Tabel Rata-Rata Persentase hidup kecambah hari ke 9	55
20	. Tabel ANOVA Persentase hidup kecambah hari ke 9	56
21	. Tabel Rata-Rata Persentase hidup kecambah hari ke 10	56
22	. Tabel ANOVA Persentase hidup kecambah hari ke 10	57
23	. Tabel Rata-Rata Persentase hidup kecambah hari ke 11	57
24	. Tabel ANOVA Persentase hidup kecambah hari ke 11	58
25	. Tabel Rata-Rata Persentase hidup kecambah hari ke 12	58
26	. Tabel ANOVA Persentase hidup kecambah hari ke 12	59
27	. Tabel Rata-Rata Persentase hidup kecambah hari ke 13	59
28	. Tabel ANOVA Persentase hidup kecambah hari ke 13	60
29	. Tabel Rata-Rata Persentase hidup kecambah hari ke 14	60
30	. Tabel ANOVA Persentase hidup kecambah hari ke 14	61
31	. Tabel Rata-Rata Tinggi Tanaman (cm) 7 HST	61
32	. Tabel ANOVA Tinggi Tanaman (cm) 7 HST	62
33	. Tabel Rata-Rata Tinggi Tanaman (cm) 14 HST	62
34	. Tabel ANOVA Tinggi Tanaman (cm) 14 HST	63
35	. Tabel Rata-Rata Jumlah Daun (helai) 7 HST	63
36	. Tabel Rata-Rata Jumlah Daun (helai) 14 HST	64
37	. Tabel Rata-Rata Berat segar pertanaman (g)	64
38	. Tabel ANOVA Berat segar pertanaman (g)	65

UNIVERSITAS MEDAN AREA

XV

39. Tabel Rata-rata Berat segar (g)	65
40. Tabel ANOVA Barat segar (g)	66
41. Tabel Rata rata Panjang Akar (cm)	66
42. Tabel ANOVA Panjang Akar (cm)	67
43. Data Suhu Dan Kelembapan Ruangan	68
44. Hasil Uji Laboratorium Air Leri	69
45. Hasil Uji Laboratorium Cocopeat dan Arang Sekam	71
46. Dokumentasi Penelitian	72

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

I. PENDAHULUAN

1.1 Latar Belakang

Microgreens dikenal sebagai tanaman muda yang dipanen dan dikonsumsi pada awal masa penanaman. Usia panen Microgreens umumnya berkisar pada 7-14 hari setelah tanam, ketika kotiledon telah berkembang sempurna menjadi sepasang daun kotiledon (Allegretta et al., 2019) Microgreens memiliki ukuran panen 3-10 cm dan dipanen tanpa akar. Microgreens menjadi makanan fungsional yang memiliki kualitas gizi yang baik, cita rasa dan warna yang menarik, serta tekstur yang lembut. Tampilan menarik dari Microgreens membuat sayuran ini sering dihidangankan seperti salad, sup, roti lapis, maupun hiasan berbagai hidangan utama yang dapat dikonsumsi (Treadwell et al., 2016).

Salah satu tanaman yang dapat dijadikan *Microgreens* adalah sawi (*Brassica juncea* L.) merupakan jenis sayuran yang berasal dari keluarga kubis - kubisan (*Brassicaceae*). Sayuran ini banyak digemari oleh petani karena memiliki nilai komersial serta prospek yang baik. Tanaman sawi memiliki banyak kandungan gizi seperti karbohidrat, protein, lemak, Vitamin, Ca, P dan Fe. Tanaman ini dianggap banyak memiliki manfaat bagi tubuh manusia karena sabagai sumber vitamin. Budidaya tanaman ini relatif mudah, namun tanaman sawi biasa dipanen pada umur 40 hari, sehingga membutuhkan waktu yang cukup lama untuk bisa menghasilkan produksi kembali. Oleh karena itu, diperlukannya inovasi terbaru untuk memotong lamanya waktu produksi dari tanaman sawi yaitu salah satu inovasi yang sedang banyak dilakukan saat ini adalah konsep bercocok tanam dengan budidaya *Microgreens* di lahan yang terbatas.

Berbagai penelitian menunjukkan kandungan gizi pada *Microgreens* cenderung lebih tinggi dari pada sayur dewasa. Walaupun dipanen pada usia yang masih sangat muda, sayuran dalam bentuk *Microgreens* mempunyai kandungan nutrisi seperti folat, vitamin C, vitamin K, zat besi dan tinggi potasium (kalium), serta mengandung senyawa antioksidan seperti *sulforaphane* (Widiwurjani *et al.*, 2019).

Pertumbuhan *Microgreens* membutuhkan air dan nutrisi yang cukup untuk perkembangan batang dan daun, berbeda dengan kecambah yang hanya membutuhkan air karena memiliki cadangan makanan di kotiledon. Nutrisi dapat dipasok dari media tanam atau dengan aplikasi gabungan keduanya (Kyriacou *et al.*, 2016). Menurut Hairudin *et al.*, 2018, pemberian leri atau sering disebut air cucian beras dapat menjadi alternatif nutrisi karena mengandung zat pengatur tumbuh (ZPT) berupa auksin dan giberelin serta beberapa kandungan yang dimiliki oleh air leri meliputi karbohidrat, nitrogen, fosfor, kalium, magnesium, sulfur, besi, dan vitamin B1.

Banyak faktor yang mempengaruhi pertumbuhan *Microgreens*, salah satunya media tanam. Media tanam merupakan komponen utama dalam bercocok tanam yang harus disesuaikan dengan jenis tanaman yang akan ditanam. Media tanam merupakan salah satu faktor penentu keberhasilan budidaya. *Microgreens* dapat ditanam dengan berbagai metode tetapi media tanam berperan utama dalam menentukan hasil dan kualitasnya (Sinha & Thilakavathy, 2021).

UNIVERSITAS MEDAN AREA

2

Media tanam dibedakan berdasarkan jenis bahan penyusunnya yaitu media tanam berbahan organik dan anorganik. Media tanam yang termasuk dalam kategori bahan organik antara lain seperti arang, batang pakis, kompos, moss, pupuk kandang, sabut kelapa (cocopeat), sekam padi dan humus. Media tanam bahan anorganik antara lain seperti hidrogel, pasir, kerikil, pecahan batu bata, rockwool, tanah liat, *vermiculite* dan *perlite*.

Cocopeat merupakan media tanam organik yang dihasilkan dari proses penghancuran sabut kelapa (Irawan dan Hidayah, 2014). Media tanam ini mempunyai kualitas yang tak kalah dengan tanah. Cocopeat mempunyai sifat yang mudah menyerap dan menyimpan air. Cocopeat juga mempunyai pori - pori yang memudahkan pertukaran udara dan masuknya sinar matahari. Didalam serbuk sabut kelapa terkandung unsur hara dari alam yang sangat dibutuhkan tanaman (Rosalyne, 2019). Arang sekam merupakan limbah organik yang dapat membantu memperbaiki sifat - sifat tanah sehingga dapat digunakan sebagai pembenah tanah dalam upaya rehabilitasi lahan untuk mendukung pertumbuhan tanaman (Supriyanto & Fiona, 2010). Kompos merupakan hasil dekomposisi berbagai jenis bahan organik oleh mikroorganisme pengurai. Kelebihan dari penggunaan kompos sebagai media tanam adalah sifatnya yang mampu mengembalikan kesuburan tanah melalui perbaikan sifat - sifat tanah. Kandungan bahan organik yang tinggi dalam kompos sangat penting untuk memperbaiki kondisi tanah (Zulkarnain et al. 2013). Kompos sebagai media tanam memiliki keunggulan yaitu mampu mengembalikan kesuburan tanah dengan cara memperbaiki sifat fisik, kimia dan biologis tanah tersebut (Ariyanti et al., 2018).

UNIVERSITAS MEDAN AREA

3

Berdasarkan uraian di atas, maka dilakukan penelitian untuk mengetahui pengaruh pemberian air leri dan berbagai jenis media tanam yang terbaik untuk pertumbuhan dan produksi *Microgreens* tanaman sawi.

1.2 Rumusan Masalah

Adapun rumusan masalah yang dikaji dalam penelitian ini, sebagai berikut :

- 1. Bagaimana pengaruh pemberian air leri dalam meningkatkan pertumbuhan dan produksi *Microgreens* tanaman sawi (*Brassica juncea* L.).
- 2. Bagaimana pengaruh media tanam terhadap pertumbuhan dan produksi *Microgreens* tanaman sawi (*Brassica juncea* L.).

1.3 Tujuan

Adapun tujuan dari penelitian yang dikaji dalam penelitian ini, sebagai berikut :

- 1. Mengetahui pengaruh pemberian air leri dalam meningkatkan pertumbuhan dan produksi *Microgreens*.
- 2. Mengetahui bagaimana pengaruh media tanam terhadap pertumbuhan dan produksi pada *Microgreens*.
- Mengetahui kombinasi air leri dan jenis media tanam terbaik terhadap produksi Microgreens.

1.4 Manfaat

Adapun manfaat dari penelitian yang dikaji dalam penelitian ini, sebagai berikut :

 Sebagai salah satu syarat untuk mendapatkan gelar Sarjana Pertanian di Program Studi Agroteknologi Fakultas Pertanian Universitas Medan Area.

UNIVERSITAS MEDAN AREA

4

- 2. Sebagai informasi bagi peneliti dan mahasiswa pada khususnya dalam melakukan budidaya *Microgreens*.
- Sebagai landasan penelitian lanjutan dalam melihat pengaruh pemberian air leri dan berbagai jenis media tanam.

1.5 Hipotesis

- Ada pengaruh sangat nyata pada pertumbuhan dan produksi Microgreens tanaman sawi terhadap pemberian air leri
- 2. Ada pengaruh sangat nyata pada pertumbuhan dan produksi *Microgreens* tanaman sawi terhadap berbagai jenis media tanam
- 3. Ada pengaruh sangat nyata pada pertumbuhan dan produksi *Microgreens* tanaman sawi terhadap kombinasi pemberian air leri dan media tanam terhadap

II. TINJAUAN PUSTAKA

2.1 Microgreens

Microgreens merupakan tanaman dari sayuran yang dikonsumsi ketika masih berumur sangat muda. Microgreens adalah istilah pemasaran yang digunakan untuk mendeskripsikan sayuran kecil, lunak dan dapat dimakan yang berkecambah ditanah atau pengganti tanah dari biji sayuran dan herbal (Bliss, 2014). Microgreens merupakan tanaman kecil seperti kecambah namun memiliki pertumbuhan yang lebih lama dari kecambah dan berdaun lebih besar dan lebih hijau (Valupi dkk, 2021).

Gambar 2.1. *Microgreens* Sawi Sumber: Agus, 2021

Microgreens mengandung konsentrasi komponen fungsional yang lebih tinggi seperti vitamin, mineral, antioksidan dan meningkatkan imun tubuh dari pada yang ditemukan pada sayuran dewasa (Deepa dan Malladadavar, 2020). Microgreens yang juga dikenal sebagai konfeti sayuran, adalah kelas tanaman yang semakin populer saat ini dikalangan konsumen, petani perkotaan, ahli teknologi pangan dan gizi karena komposisi fitokimia yang lebih tinggi dibandingkan dengan tanaman dewasanya (Kyriacou et al., 2020).

2.2 Tanaman Sawi

Tanaman sawi (Brassica juncea L.) merupakan salah satu tanaman yang

dikonsumsi batang dan daunnya. Sayuran sawi ini merupakan sayuran yang sangat

umum dikonsumsi masyarakat. Tanaman dari famili Brassicaceae ini memiliki

kandungan gizi, vitamin, mineral yang tinggi. Dikenal sebagai tanaman semusim,

memiliki ciri berdaun lonjong, halus, tidak berbulu dan batang sejati keras berwarna

putih kehijauan.

Menurut Pary (2018) klasifikasi tanaman sawi (Brassica juncea L.) adalah

sebagai berikut:

Kingdom

: Plantae

Divisi

: Spermatophyta

Kelas

: Angiospermae

Sub kelas

: Dicotyledonae

Ordo

: Papavorales

Famili

: Brassicaceae

Genus

: Brassica

Spesies

: Brassica juncea L.

Tanaman sawi dapat tumbuh didaerah dataran rendah maupun dataran

tinggi. Tanaman sawi dapat tumbuh dengan baik pada ketinggian berkisar 5-1200

mdpl, namun memberikan hasil terbaik pada ketinggian 100-500 mdpl (Montolalu,

2011). Suhu optimal untuk pertumbuhan tanaman sawi berkisar 16-18°C, dan

tanaman sawi ini sebaiknya ditanam pada akhir musim penghujan. Tanaman sawi

dapat tumbuh baik pada kondisi tanah dengan tingkat kesuburan yang tinggi,

UNIVERSITAS MEDAN AREA

kandungan bahan organik tinggi, gembur dan mudah mengikat air, yang memiliki kisaran pH optimum tumbuh 6-7 (Istarofah dan Salamah, 2017).

2.3 Air Leri

Air leri merupakan produk alami yang dapat digunakan untuk meningkatkan kesuburan tanaman. Air leri mengandung senyawa organik yang dapat dimanfaatkan sebagai sumber hara (Wardiah, 2014). Air leri adalah limbah dari kegiatan rumah tangga yang sering kali terbuang dengan percuma. Padahal air leri mengandung karbohidrat, nutrisi, vitamin dan zat-zat mineral lainnya (Istiqomah, 2012).

Gambar 2.2. Air leri atau Air cucian beras Sumber: wardiah, 2014

Limbah air leri juga mengandung beberapa senyawa organik yang dapat meningkatkan kesuburan tanah sehingga dapat memacu produktivitas tanaman. hasil analisis kandungan air leri putih adalah unsur hara yang terkandung dalam air leri berada pada kisaran yang cukup diantaranya 0,03% N; 0,42% P2O5; 0,06% K2O; 0,46% C-organik (Ariyanti *et al.*, 2021). Dan 14,25% Ca, 2,94% Ca, 0,03% S, 0,04% Fe (Wulandari *dkk.*,2012). Bila senyawa organik tersebut dapat dimanfaatkan dengan baik maka akan bermanfaat bagi masyarakat terkhusus dalam bidang pertanian untuk meningkatkan produktivitas tanaman. Penggunaan air leri

UNIVERSITAS MEDAN AREA

 $^{1.\,}Dilarang\,Mengutip\,sebagian\,atau\,seluruh\,dokumen\,ini\,tanpa\,mencantumkan\,sumber$

^{2.} Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah

ini dapat dimanfaatkan sebagai sumber nutrisi alternatif atau suplemen tambahan bagi tanaman. Air leri mengandung vitamin B1 yang berperan dalam proses metabolisme tanaman untuk mengonversi karbohidrat menjadi energi penggiat aktivitas pertumbuhan didalam tanaman (Samahah, 2015). Vitamin B1 pada air leri dimanfaatkan tanaman menjadi energi untuk beraktivitas dan bagus bagi pertumbuhan akar. Lebih lanjut berdasarkan pernyataan Himayana *et al.* (2018), air leri mengandung unsur P, Mg, N dan ZPT.

2.4 Media Tanam

Media yang cocok untuk digunakan dalam budidaya *Microgreens* yaitu media yang memiliki porositas yang baik, dapat menyimpan air dan dapat menjaga kelembaban. *Microgreens* dapat tumbuh baik pada media tanam yang gembur dan kondisi yang steril. Media tanam yang umum digunakan untuk budidaya *Microgreens* yaitu media tanah, pasir dan media hidroponik seperti rockwool, cocopeat, hidroton dan lain-lain (Widiwurjani *dkk*. 2020). Pada skala usaha komersial, media tanam yang digunakan untuk *Microgreens* adalah media lembaran seperti tikar atau karung yang dapat diangkat dengan mudah dari wadah sehingga memudahkan dalam proses panen (Zulkarnaen & Irawati, 2018).

2.4.1 Cocopeat

Cocopeat adalah salah satu media tanam yang dihasilkan dari penghancuran sabut kelapa hingga menghasilkan serabut yang kasar dan halus. Media ini banyak digunakan di rumah kaca besar untuk praktek pertanian yang berkelanjutan karena merupakan produk terbarukan. Sabut kelapa yang baik untuk menanam *Microgreens* yaitu yang berupa serbuk halus. Sabut kelapa yang dihancurkan menjadi cocopeat menghasilkan tekstur menyerupai tanah dengan serat-serat yang

UNIVERSITAS MEDAN AREA

Q

mampu mengikat dan menyimpan air sehingga nutrisi dapat diserap (Salim, 2021). Media tanam cocopeat memiliki kemampuan mengikat air karena memiliki sifat remah-remah. Kelebihan cocopeat adalah media tanam yang ringan, dapat menyimpan air hingga 73%, dan dapat menyimpan nutrisi yang cukup sehingga tanaman tidak akan kekurangan air dan nutrisi (Umar *et al.*, 2016).

Gambar 2.3. Cocopeat Sumber: Salim, 2021

Cocopeat suatu limbah dari sabut kelapa yang banyak terdapat pada daerah tropis. Cocopeat merupakan hasil ekstraksi sabut kelapa yang memiliki kandungan unsur hara essensial yang cukup untuk membantu pertumbuhan tanaman sehingga cocopeat sering kali dijadikan sebagai media tumbuh bagi tanaman. Menurut Irawan & Hidayah (2014), cocopeat dianggap sebagai komponen media tanah yang baik dengan pH dan reaksi kimia lainnya. Cocopeat telah dikenal memiliki kapasitas menjerap air yang tinggi sehingga menyebabkan pergerakan udara dalam air buruk, aerasi yang rendah dapat mempengaruhi difusi oksigen ke akar (Pratiwi dkk., 2017). Sabut kelapa atau yang biasa disebut cocopeat memiliki daya simpan air yang tinggi antara 6-8 kali bobot keringnya sehingga hemat air dan nutrisi, menunjang akar dengan cepat yang baik untuk pembibitan, sesuai untuk daerah panas dan mengandung unsur-unsur hara esensial, seperti kalsium (Ca), magnesium

UNIVERSITAS MEDAN AREA

(Mg), kalium (K), natrium (N), dan fosfor (P) (Hasriani, 2013). Cocopeat mempunyai pH antara 5,0 hingga 6,8 sehingga sangat baik untuk pertumbuhan tanaman apapun.

Dalam penelitian Ramli *dkk* (2023) mengatakan bahwa jenis media tanaman *Microgreens* tidak berpengaruh pada tinggi tanaman umur 7 hari setelah tanam, tetapi berpengaruh nyata pada umur 14 HST. Jenis media tanam *Microgreens* terbaik yaitu kombinasi cocopeat dan air kelapa untuk pertumbuhan hasil tanaman sawi.

2.4.2 Arang Sekam

Arang sekam adalah sekam bakar yang berwarna hitam yang dihasilkan dari pembakaran yang tidak sempurna dan telah banyak digunakan sebagai media tanam. Arang sekam dapat digunakan sebagai media pilihan selain tanah pada budidaya tanaman karena daya ikat terhadap air cukup tinggi sehingga dapat mengurangi biaya pemeliharaan dalam hal penyiraman (Kurniawan dkk., 2016).

Gambar 2.4. Arang sekam Sumber: Kurniawan, 2016

Arang sekam atau sekam bakar merupakan bahan yang terbuat dari proses pembakaran kulit gabah padi. Proses pembakaran dihentikan dengan cara disiram air tepat sebelum bara sekam menjadi abu (Gustia dan Rosdiana, 2019). Arang

UNIVERSITAS MEDAN AREA

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

sekam umumnya dijadikan sebagai media tanam ataupun sebagai campuran media tanam. Selain itu, arang sekam juga memiliki kandungan karbon (C) yang tinggi sehingga membuat media tanam ini menjadi gembur. Untuk digunakan sebagai media tanam, arang sekam tidak perlu mengalami proses sterilisasi dikarenakan sifatnya baik bagi tanaman *Microgreens* (Naimnule, 2016). Selain itu, arang sekam juga telah melalui proses pembakaran sehingga diduga bebas dari benih Organisasi Pengganggu Tanaman (OPT). Secara kimia arang sekam memiliki kandungan unsur hara penting seperti nitrogen (N), fosfor (P), kalium (K), kalsium (Ca) dan magnesium (Mg). Karakteristik lain arang sekam adalah sangat ringan, kasar sehingga sirkulasi udara tinggi karena banyak pori, kapasitas menahan air yang tinggi, warnanya yang hitam dapat mengabsorbsi sinar matahari secara efektif, pH tinggi (8.5-9.0), serta dapat menghilangkan pangaruh penyakit khususnya bakteri dan gulma (Setyoadji, 2015).

2.4.3 Kompos

Kompos merupakan media tanam organik yang mengalami proses fermentasi tanaman atau limbah organik. Penggunaan kompos sebagai media tanam dapat mengembalikan kesuburan tanah karena mengandung bahan organik yang tinggi, kompos yang telah mengalami pelapukan sempurna baik untuk digunakan sebagai media tanam yang memiliki unsur hara nitrogen (N), fosfor (P), kalium (K), sulfur (S), kalsium (Ca),dan magnesium (Mg), (Amilah, 2012). Menurut Ariyanti et al.(2018), media tanam kompos memiliki keuntungan yaitu mampu memperbaiki sifat fisik, kimia dan biologis tanah, penyerapan unsur nitrogen yang cepat, dan dapat diperoleh dengan mudah, murah dan cepat.

UNIVERSITAS MEDAN AREA

Gambar 2.5. Kompos Sumber: Gofar, 2021

Kompos adalah proses yang dihasilkan dari pelapukan sisa-sisa bahan organik secara biologi yang terkontrol (sengaja dibuat dan diatur) menjadi bagianbagian yang terhumuskan. Proses yang terjadi pada pengomposan yaitu bahanbahan organik yang sudah mengalami proses pelapukan karena terjadi interaksi antara mikroorganisme atau bakteri pembusuk yang bekerja di dalam bahan organik tersebut. Kompos juga berguna untuk meningkatkan daya ikat tanah terhadap air sehingga dapat menyimpan air tanah lebih lama. Kompos merupakan salah satu media tanam yang dapat pula dijadikan sebagai pupuk yang berasal dari bahanbahan organik berupa sisa-sisa tanaman seperti dedaunan, jerami, dedak padi ataupun limbah ternak seperti kotoran hewan yang kemudian diuraikan dengan bantuan mikroorganisme hidup/dekomposer (Gofar et al., 2021).

III. METODOLOGI PENELITIAN

3.1. Waktu dan Tempat Penelitian

Penelitian dilakukan bulan Maret sampai Mei 2024 bertempat di Dusun B.7

Desa Stabat Lama, Kecamatan Wampu, Kabupaten Langkat, Provinsi Sumatera

Utara

3.2. Bahan dan Alat Penelitian

Bahan-bahan yang digunakan adalah benih sawi kumala, cocopeat, arang sekam, kompos, air dan air leri. Alat-alat yang digunakan dalam penelitian ini adalah nampan atau nampan plastik berukuran 5 cm x 13 cm x 19 cm, botol semprotan (sprayer), timbangan, gunting, pengaris, kamera dan alat tulis.

3.3. Metode Penelitian

Penelitian ini menggunakan Rancangan Acak Lengkap (RAL) Faktorial dengan 2 faktor perlakuan yang diteliti:

1. Faktor pertama yaitu pemberian air leri,dan air biasa dengan 4 taraf:

A0 = Kontrol tanpa air leri

A1 = Air leri 100 ml

A2 = Air leri 150 ml

A3 = Air leri 200 ml

2. Faktor kedua yaitu perbedaan media tanam yang terdiri dari 3 taraf yaitu:

M1= Cocopeat

M2= Arang Sekam

M3 = kompos

Dengan demikian diperoleh jumlah kombinasi perlakuan sebanyak 4x3 =12 kombonasi perlakuan

Document Accepted 16/12/24

A0M1	A1M1	A2M1	A3M1
A0M2	A1M2	A2M2	A3M2
A0M3	A1M3	A2M3	A3M3

Berdasarkan kombinasi perlakuan yang dapat yaitu 12 kombinasi perlakuan, maka ulangan yang digunakan dalam percobaan ini menurut perhitungan ulangan minimum pada Rancangan Acak Lengkap Faktorial sebagai berikut:

$$t (r-1) \ge 15$$

$$12 (r-1) \ge 15$$

$$12r - 12 \ge 15$$

$$12r \ge 15 + 12$$

r
$$\geq 2,25$$
 (3 ulangan)

Satuan Penelitian

Jumlah ulangan : 3 ulangan

Jumlah plot/ulangan : 12 kombinasi

Jumlah seluruh plot : 36 plot

Jumlah sampel/plot : 10 tanaman

Jumlah bibit/plot : 100 tanaman

UNIVERSITAS MEDAN AREA

3.4. Metode Analisi Data

Data yang diperoleh dari hasil pengamatan diuji dengan menggukan Analysis Of Variance (ANOVA) secara deskriptif kuantitatif, dengan mentabulasi data-data kemudian menginterprestasikannya.

Yijk =
$$\mu + \alpha i + \beta j + (\alpha \beta) ij + Eijk$$
,
($i = 1,2,3...$; $j = 1,2; k = 1,2,3...$)

Yijk = Pengaruh pemberian air leri taraf ke-j dan berbagai jenis media tanam pada taraf ke-i

μ = Nilai tengah umum

αi = Pengaruh jenis Media Tanam pada tahap taraf ke-i

βj = Pengaruh pemberian leri pada taraf ke-j

(αβ)ij = Pengaruh kombinasi antara jenis media tanam pada taraf ke-i dengan aplikasi air leri pada taraf ke-j

Èijk = Pengaruh galat percobaan akibat perlakuan jenis media tanam pada taraf ke-i dan aplikasi air leri pada taraf ke-j yang ditempatkan pada ulangan ke-k. Apabila hasil sidik ragam berbeda nyata maka dilanjutkan dengan uji jarak duncan (Montgomery, 2009).

3.5. Pelaksanaan Penelitian

3.5.1. Persiapan Media Tanam

Media tanam yang digunakan terdiri dari cocopeat, arang sekam dan kompos. Setiap media tanam dilakukan pembersihan terlebih dahulu. Untuk cocopeat, langkah pertama dilakukan pencucian atau perendaman hingga bersih, kemudian tunggu sampai cocopeat tidak terlalu basah. Setelah itu, masing-masing media tanam diisi kedalam nampan atau wadah plastik dengan ketebalan kurang

UNIVERSITAS MEDAN AREA

lebih 3 cm atau sekitar 1/4 tinggi nampan plastik, sesuai dengan perlakuan yang telah ditentukan.

Gambar 3.1. Persiapan media tanam *Sumber: Dokumen pribadi*

3.5.2. Penanaman

Proses penanaman *Microgreens* sawi dimulai dengan menaburkan benih secara merata menggunakan tangan keseluruh permukaan media tanam. Penting untuk memberikan jarak yang cukup antara benih agar tidak terlalu rapat. Jarak tanaman yang digunakan 1 cm. Jumlah benih yang dibutuhkan untuk setiap nampan adalah sekitar 100 butir.

Gambar 3.2. Penanaman Sumber: Dokumen pribadi

Setelah benih ditabur kemudian media tanam diratakan ke seluruh permukaan dan pastikan media tanaman menutupi semua biji dengan baik. Setelah itu semprot menggunakan sprayer yang berisi air ke nampan hingga merata pada tiap-tiap nampan.

UNIVERSITAS MEDAN AREA

3.5.3. Penyiraman

Penyiraman dilakukan setiap hari pada pukul 07.00 – 08.00 pagi dan 17.00 sore Setiap kali penyiraman, melihat kondisi media tanam untuk memastikan kelembapannya terjaga dengan baik. Selain itu, pemberian nutrisi dilakukan setiap tiga hari sekali sesuai dengan prosedur yang telah ditentukan. Pada pemberian nutrisi, penyiraman tidak dilakukan agar nutrisi dapat terserap dengan optimal.

Gambar 3.3. Penyiraman Sumber: Dokumen pribadi

3.5.4. Pemberian Air Leri

Pemberian air leri dimulai tiga hari setelah tanam (HST). Pemberian dilakukan setiap tiga hari sekali hingga tanaman berumur dua belas hari. Pada harihari ketika pemberian dilakukan, penyiraman tidak dilakukan untuk memastikan nutrisi terserap dengan baik. Proses pemberian air leri harus dilakukan secara hatihati untuk menghindari kerusakan pada tanaman.

Gambar 3.4. Pemberian Air Leri Sumber: Dokumen pribadi

3.5.5. Pemanenan

Kriteria pemanenan *Microgreens* tanaman sawi yaitu telah tumbuh daun kotiledon atau daun sejati pertama yang biasa disebut dengan daun asli pertama dan telah mencapai tinggi 5-10 cm atau kurang lebih 14 hari setelah tanam, pemanenan dilakukan mengunakan gunting. Diharapkan pemanenan dilakukan dengan hati hati

Gambar 3.5. Pemanenan Sumber: Dokumen pribadi

3.6. Parameter Pengamatan

Parameter pengamatan *Microgreens* tanaman sawi yaitu persentase hidup kecambah, tinggi tanaman, jumlah daun, berat sagar pertanaman, berat segar/plot dan panjang akar. Adapun pengamatan untuk setiap parameter yang diamati yaitu:

3.6.1. Persentase hidup Kecambah

Persentase hidup kecambah adalah jumlah tanaman yang hidup dari jumlah total benih yang ditanam pada setiap perlakuan. Pengamatan dilakukan pada hari ke 1 – 14 hari setelah tanam dengan melihat tanaman yang hidup dan tidak hidup. Persentase hidup dihitung menggunakan rumus.

% persentase =
$$\frac{\text{jumlah benih yang hidup}}{\text{jumlah benih yang ditanam}} x 100 \%$$

3.6.2. Pengukuran Tinggi Tanaman (cm)

Pengukuran tinggi tanaman dilakukan sebanyak dua kali dengan selang waktu tujuh hari, yaitu pada 7 HST dan 14 HST. Pengukuran dilakukan dengan cara

UNIVERSITAS MEDAN AREA

19

mengukur batang utama dari atas permukaan media tanam hingga titik tumbuh tertinggi menggunakan penggaris. Sampel diambil secara acak dari setiap nampan plastik.

3.6.3. Jumlah Daun (helai)

Perhitungan jumlah daun dilakukan pada setiap sampel tanaman yang telah ditentukan. Perhitungan ini dilakukan dua kali dengan selang waktu 7 hari setelah tanam dan 14 hari setelah tanam, di setiap plot.

3.6.4. Berat Segar/Tanaman (g)

Berat segar pertanaman *Microgreens* diukur setelah pemanenan. Penimbangan dilakukan dengan mengambil *Microgreens* dari setiap perlakuan di nampan plastik, termasuk batang, daun, dan akar. Berat segar pertanaman *Microgreens* ditimbang menggunakan timbangan analitik dengan satuan gram (g).

3.6.5. Berat Segar / Plot (g)

Berat segar *Microgreens* per plot diukur setelah pemanenan atau saat tanaman berumur 14 hari setelah tanam. Penimbangan dilakukan dengan mengambil *Microgreens* dari setiap perlakuan di nampan plastik, termasuk batang dan daun. Berat segar *Microgreens* ditimbang menggunakan timbangan analitik dengan satuan gram (g).

3.6.6. Panjang akar (cm)

Pengukuran panjang akar dilakukan pada setiap sampel saat usia tanaman mencapai 14 hari setelah tanam atau saat masa pemanenan *Microgreens*. Sebelum melakukan pengukuran, dilakukan pembersihan terlebih dahulu. Pengukuran panjang akar dimulai dari pangkal tanaman hingga ujung akar.

UNIVERSITAS MEDAN AREA

20

V. KESIMPULAN DAN SARAN

5.1 Kesimpulan

- Pada perlakuan pemberian air leri menunjukkan hasil sangat nyata terhadap 1. panjang akar sedangkan pada persentase hidup tanaman, tinggi tanaman, jumlah daun, berat segar pertanaman, dan berat segar per plot menunjukkan tidak nyata pada Microgreens.
- 2. Pada perlakuan berbagai jenis media tanam menunjukkan hasil berpengaruh sangat nyata terhadap persentase hidup tanaman, tinggi tanaman, jumlah daun, berat segar perplot dan panjang akar, sedangkan pada berat segar pertanaman menunjukan hasil yang tidak nyata pada Microgreens.
- 3. Pada perlakuan kombinasi air leri dan berbagai jenis media tanam menunjukan hasil sangat nyata terhadap berat segar perplot dan panjang akar sedangkan terhadap persentase hidup tanaman, tinggi tanaman, jumlah daun, berat segar pertanaman menunjukan hasil yang tidak nyata pada Microgreens.

5.2 Saran

Berdasarkan dari hasil penelitian yang telah dilakukan maka penulis dapat memberikan saran yaitu:

- 1. Bagi petani, disarankan menggunakan media tanaman cocopeat terhadap pertumbuhan Microgreens dikarena perlakuan tersebut adalah perlakuan yang paling baik.
- 2. Bagi peneliti selanjutnya diharapkan menggukan berat dan volume media tanam yang berbeda – beda.

DAFTAR PUSTAKA

- Agus, M, 2021. Budidaya *Microgreens*: Sayuran Kecil Kaya Nutrisi dan Menyehatkan. Bandung: Yayasan Lembaga Pendidikan dan Pelatihan Multiliterasi
- Allegretta, I., Concetta E., Massimiliano, R., Vito, M., Roberto T., 2019. Rapid multi-element characterization of *Microgreens* via total reflection X- ray fluorescence (TXRF) spectrometry. Food Chemistry, 296: 86–93.
- Amilah. 2012. Penggunaan Berbagai Media Tanam Terhadap Pertumbuhan dan Perkembangan Tanaman Brokoli (*Brassica oleracea varitalica*) dan Baby Kailan (*Brassica oleracea* Var. Alboglabra baley). Wahana. 59 (21).
- Andri, S., Nelvia dan Saputra, S.I. 2016. Pemberian kompos TKKS dan Cocopeat pada tanah Subsoil Ultisol terhadap pertumbuhan bibit kelapa sawit (*Elaeis guineensis Jacq.*) di pre nursery. Jurnal Agroteknologi, 7(1), 1-6. DOI: http://dx.doi.org/10.24014/ja.v7i1.2242.
- Ardiansyah, M. 2013. Respons Pertumbuhan dan Produksi Kedelai Hasil Selek si Terhadap Pemberian Asam Askorbat dan Inokulasi Fungi Mikoriza Arbuskulardi Tanah Salin.Universitas Sumatera Utara, Medan
- Ariyanti, M., Suherman, C., Maxiselly, Y., Rosniawaty, S. 2018. Pertumbuhan tanaman kelapa (*Cocos nucifera* L.) dengan pemberian air kelapa. Jurnal Hutan Pulau pulau Kecil 2(2): 201-212.
- Atoilah, M, Hayatul Rahmi dan Ani Lestari 2021. Uji Efektivitas Pemberian Fermentasi Air Cucian Beras Terhadap Pertumbuhan Tanaman Caisim (*Brassica juncea* L) Varietas Tosakan. Jurnal Ilmiah Wahana Pendidikan
- Bachtiar, B. dan A. H. Ahmad. 2019. analisis kandungan hara johar Cassia siamea dengan penambahan aktivator promi. BIOMA, 4(1): 68-76.
- Bahar, A. E. 2016. Pengaruh Pemberian limbah Air Cucian Beras Terhadap Pertumbuhan Kangkung Darat (*Ipomoea Reptans* L.). Artikel Ilmiah Program Studi Agroteknologi Fakultas Pertanian Universitas Pasir Pengaraian, Riau.
- Bliss, M. 2014. Is Food The New Status Symbol. https://www.mediapost.com/publications/article/235941/is-food-the-new-status-symbol.html.
- Deepa, N. and Malladadavar, D. 2020. *Microgreens*: The treasure of Nutrients. International Journal of Current Microbiology and Applied Sciences, 9(2), 18–23
- Fahmi, A., Syamsudin, S. Utami dan Radjagukguk. 2010. Pengaruh Interaksi Hara Nitrogen dan Fosfor terhadap Pertumbuhan Tanaman Jagung (*Zea Mays* L) pada Tanah Regosol dan Latosol. Berita Biologi 10(3): 297-304
- Fathimah, Z dan Idris, M 2023. Pengaruh Limbah Air Cucian Beras Dan Media Tanam Terhadap Pertumbuhan Vegetatif Tanaman Okra (*Abelmoschus escelentus* L.) best jurnal Vol.6 No.1 Hal. 627-633

UNIVERSITAS MEDAN AREA

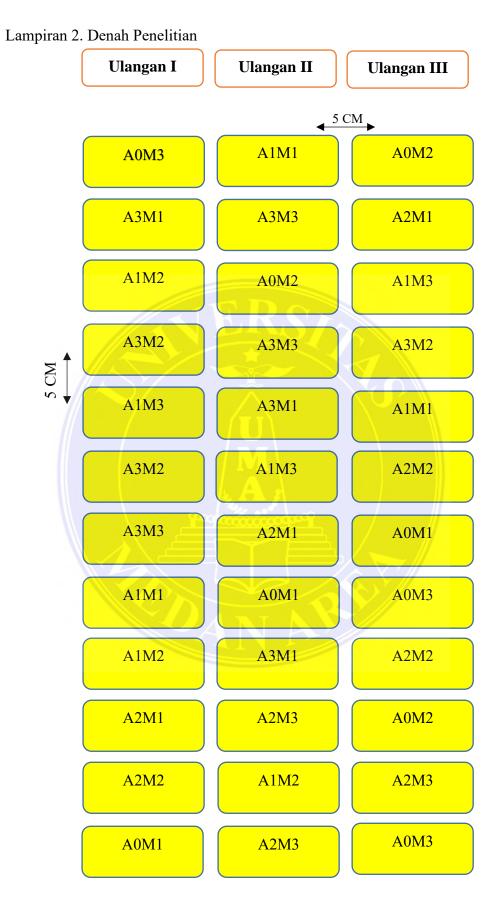
40

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

- Fefiani, Yusri., dan Wan Arfiani Barus. 2014. Respon Pertumbuhan Dan Produksi Tanaman Mentimun (Cucumis sativus L.) Akibat Pemberian Pupuk Kandang Sapi Dan Pupuk Organik Padat Supernasa. Jurnal Agrium. Vol 19. No 1. Hal (27 -28).
- Gofar, N., Bakri, Wardhana, A. S., dan Nur T. P. 2022. Aplikasi biostimulan dalam budidaya tanaman cabai merah (Capsicum annuum L.) pada Ultisols. In Prosiding Seminar Nasional Pembangunan dan Pendidikan Vokasi Pertanian (Vol. 3, No. 1, pp. 603-622).
- Gunawan, S., Hadi, S., dan Prabowo, A. 2020. "Karakteristik Cocopeat Sebagai Media Tanam Untuk Pertumbuhan Tanaman Sayuran." Jurnal Hortikultura, 17(2), 98-104.
- Gustia dan Rosdiana. 2019. Kombinasi Media Tanam dan Penambahan Pupuk Organik Cair terhadap Pertumbuhan dan Produksi Tanaman Cabe. Jurnal Agrosains dan Teknologi, 4 (2): 70-78.
- Hairudin, R., Yamin, M., dan Riadi, A. 2018. Respon Pertumbuhan Tanaman Anggrek (Dendrobium Sp.) Pada Beberapa Konsentrasi Air Cucian Ikan Bandeng Dan Air Cucian Beras Secara in Vivo. Jurnal Perbal, 6(2), 23–29.
- Hardjowigeno, S. 2015. Dasar-Dasar Ilmu Tanah. Penerbit Akademika Pressindo. Jakarta, 288 hal.
- Hasriani, Kalsim DK dan Sukendro A, 2013. Kajian serbuk sabut kelapa (cocopeat) sebagai media tanam. http://dedikalsim.wordpress.com. Hlm 56.
- Herawati, D., dan Mulyani, N. 2022. Pengaruh Air Leri Beras Terhadap Pertumbuhan Tanaman Kangkung (Ipomoea aquatica Forsk.). Jurnal Hortikultura Indonesia, 11(1), 45-56.
- Himayana, A. dan Aini, N. 2018. pengaruh pemberian Air Limbah Cucian Beras terhadap Pertumbuhan Dan Hasil Tanaman Pakcoy (Brassica rapa var chinensis). Jurnal Produksi Tanaman, 6(6).
- Irawan, A dan Y. Kafiar. 2015. Pemanfaatan Cocopeat dan Arang Sekam Padi Sebagai Media Tanam Bibit Cempaka Wasian (Elmerrilia ovalis). Masyarakat Biodiversitas Indonesia. 1(4): 805-808.
- Irawan. A dan Hidayah. N. H. 2014. Kesesuaian Penggunaan Cocopeat Sebagai Media Sapih Pada Politube Dalam Pembibitan Cempaka (Magnolia elegans). Jurnal WASIAN. 73-76 hal.
- Istarofah dan Salamah. 2017. Pertumbuhan Tanaman Sawi Hijau (Brassica juncea L.) dengan Pemberian Kompos Berbahan Dasar Daun Paitan (Thitonia diversifolia). Bio-site I (1): 39-46.
- Istiqomah, N. 2012. Efektivitas Pemberian Air Cucian Beras Coklat Terhadap Produktivitas Tanaman Kacang Hijau (*Phaseolus radiatus* L.) Pada Lahan Rawa Lebak. Jurnal Ziraa'ah 1 (33): 99-108.

- Kalsum, U., Fatimah, S., dan Wasonowati, C. 2011. Efektivitas pemberian air leri terhadap pertumbuhan dan hasil jamur tiram putih (*Pleurotus ostreatus*). Agrovigor, 4(2), 86–92.
- Kurniawan, B., S. Agus, dan M. Dawam. 2016. Pengaruh Beberapa Macam Media terhadap Pertumbuhan Stek Plantlet Tanaman Kentang (*Solanum tuberosum* L.) Varietas Granola Kembang. Jurnal Produksi Tanaman, 4 (2): 123 128.
- Kyriacou, M., Rouphael, Y., Di Gioia, F., Kyratzis, A., Serio, F., Renna, M., 2016. Micro-scale vegetable Production and The Rise of *Microgreens*. Trends Food Sci. Technol, 57, 103-115.
- Lahadassy. J., A.M Mulyati dan A.H Sanaba. 2017.Pengaruh Konsentrasi Pupuk Organik Padat Daun Gamal terhadap Tanaman Sawi, Jurnal Agrisistem, 3 (6): 51-55.
- Montgomery, D.C. 2009. Design And Analysis Of Experiment 6 Th Edition. New York : Jhon Wiley & Sons.
- Montolalu, I. 2011. Respon Pertumbuhan dan Produksi Sawi Hijau (*Brassica juncea.L*) Terhadap Pemberian Em-4, Jurnal Ilmiah Unklab Vol 15. No. 1 Juni 2011
- Muliawan, L. 2009. Pengaruh Media Semai Terhadap Pertumbuhan Pelita (*Ecauliptus pellita* F. Muell). Skripsi. Institut Pertanian Bogor. 104 Hlm.
- Naimnule, M. A. 2016. Pengaruh Takaran Arang Sekam dan Pupuk Kandang Sapi Terhadap Pertumbuhan dan Hasil Kacang Hijau (*Vigna radiata*, L.). Fakultas Pertanian Universitas Timor. Kefamenanu.
- Nugraheni, Sri Haryanti Dan Erma Prihastanti 2018. Pengaruh Perbedaan Kedalaman Tanam dan Volume Air terhadap Perkecambahan dan Pertumbuhan Benih Sorgum (Sorghum Bicolor L.) Moench) Volume 3 Nomor 2 ,journal2.undip.ac.id/index.php/baf/index
- Nugroho, C., dan I. Raden. 2021. Aklimatisasi Tiga Jenis Anggrek Pada MediaTanam yang Berbeda. Jurnal Pertanian
- Nuni Gofar ,Tri, P., Shinta,D., ,danNeni, S. 2022 .Teknik Budidaya *Microgreens*, Bening media Publishing
- Pary, C., 2018. Pengaruh Pupuk Organik (Daun Lamtoro) Dalam Berbagai Konsentrasi Terhadap Pertumbuhan Tanaman Sawi. Fikratuna: Jurnal Penelitian Sosial Keagamaan, 7(2).
- Prasetyo, W., dan Lestari, D. 2018. Pengaruh Kombinasi Air Leri dan Media Tanam Terhadap Pertumbuhan Tanaman Bayam (*Amaranthus* sp.). Jurnal Agronomi Indonesia
- Pratiwi, N. Simanjuntak, Bistok dan Banjarnahor, Dina. 2017. Pengaruh Campuran Media Tanam terhadap Petumbuhan Tanaman Stroberi (*Fragaria vesca* L.) sebagai Tanaman Hias Taman Vertikal. Jurnal AGRIC 29(1): 11-20.

42

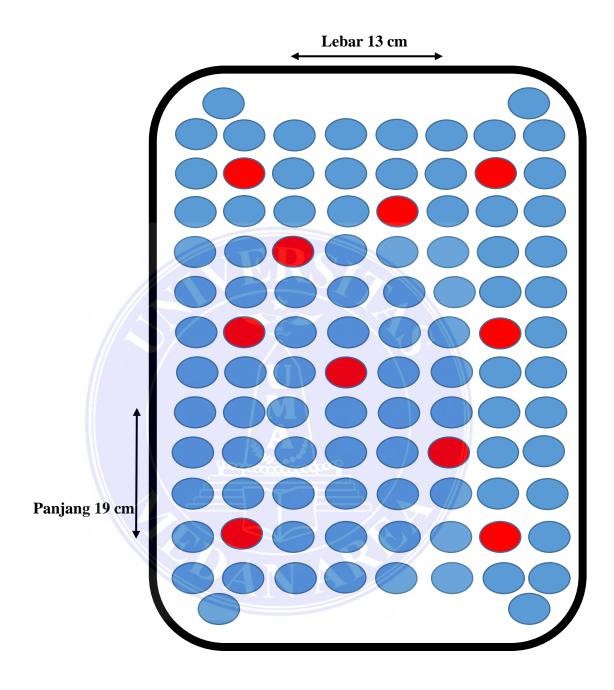

- Puspaningrum, E., Rustam, R.,dan Santosa, H. 2019. "The Use of Organic Fertilizers on Microgreen Growth and Quality." *Agricultural Science & Technology*, 11(2), 100-106.
- Putri, A. D., Sudiarso., dan T. Islami. 2013. Pengaruh Komposisi Media Tanam pada Teknik Budchip Tiga Varietas Tebu (*Saccharum officinarum* L.). Universitas Brawijaya. Jurnal Produksi Tanaman. 1(1):16-23.
- Putri, A. V., Aldina, P.R., Dan Tatik, W. 2022. Pengaruh Media Tanam Dan Pupuk Daun Terhadap Aklimatisasi Pertumbuhan Bibit Anggrek Dendrobium (*Dendrobium* Sp.) Jurnal Produksi Tanaman. Vol. 10 No. 8: 451-457.
- Ramadhan, D., Riniarti, M., dan Santoso, T. (2018). Pemanfaatan Cocopeat sebagai Media Tumbuh Sengon Laut (*Paraserianthes falcataria*) dan Merbau Darat (*Intsia palembanica*). Jurnal Sylva Lestari, 6(2), 22-31
- Ramlil, Jati Nurcholis, dan Alfisyah Ramadhani. 2023. Efektivitas Pengaplikasian Air Kelapa dan Berbagai Jenis Media Tanam terhadap Produksi *Microgreen* Tanaman Sawi (*Brassica juncea* L.) *Jurnal Agrisistem*, 19 (1),32-37
- Rika. 2015. Pertumbuhan dan pembungaan krisan (*chrysanthemum indicum* 1.) pada berbagai konsentrasi air kelapa dan vitamin B1. Skripsi, Universitas Hasanudddin Makasar.
- Rosalyne, I. 2019. Pengaruh pemberian cocopeat terhadap pertumbuhan dan produksi bengkuang (*Pachyhizus erosus*). Jurnal Ilmiah Kohesi. 3 (1): 23-28.
- Salim,M,. 2021. Budidaya *Microgreens*: Sayuran Kecil Kaya Nutrisi, Bandung: Yayasan Lembaga Pendidikan dan Pelatihan Multiliterasi,
- Samahah, N. 2015. Pengolahan air leri menjadi sabun pembersih wajah yang alami dan ekonomis. Prosiding Seminar Nasional Kimia, ISBN: 978-602-0951-05-8, 26-27.
- Sari, N., Jamilah, I., dan Yuliana, D. 2021. "Pengaruh Media Tanam terhadap Pertumbuhan dan Hasil Tanaman *Microgreens*." *Jurnal Hortikultura Tropika*, 10(1), 45-54.
- Setiawan, B., dan Hanani, S. (2021). Pengaruh Media Tanam terhadap Pertumbuhan Tanaman Sawi Hijau (Brassica rapa). Jurnal Agroekoteknologi.
- Setyoadji, D. 2015. Tanaman Hidroponik. Araska. Yogyakarta. 78 hal.
- Sinha, M., and D. Thilakavathy. 2021. Comparative study on nutrients of *microgreen* cultivated in soil, water and coco pith. Journal of Advanced Applied Scientific Research, 3(4): 72-77.
- Supriyanto dan F. Fiona. 2010. Pemanfaatan arang sekam untuk memperbaiki pertumbuhan semai jabon (*Anthocephalus cadamba* (Roxb.) pada media subsoil. J. Silvikultur Tropika, Vol. 01 (01): 24-28.

- Suryani, N dan Sari. M. N. 2019. "Penggunaan Berbagai Macam Media Tanaman dan Pemberian Pupuk Organik Cair pada Tahap Aklimatisasi Terhadap Pertumbuhan Planlet Anggrek Bulan (Phalaenopsis amabilisi) Hasil Kultur Jaringan". Dalam Jurnal Agroqua (17)1:67-75.
- Susanti, E., & Wulandari, S. 2021. Pengaruh Pemberian Pupuk Organik Cair dan Air Leri Terhadap Pertumbuhan Microgreens. Jurnal Agrikultura.
- Treadwell, D. D., Hochmuth, R., Landrum, L. and Laughlin, W. 2016. Microgreens : A New Specialty Crop. University of Florida.
- Valupi Honesty, Rosmaiti, Iswahyudi. 2021. Pertumbuhan Dan Hasil Microgreens Beberapa Varietas Pakcoy (Brassica rapa L.) Pada Media Tanam Yang Berbeda. Jurnal Nasional Fakultas Pertanian Universitas Samudra .Langsa
- Wardiah, Linda, dan Rahmatan, H. 2014. Potensi Limbah Air Cucian Beras Sebagai Pupuk Organik Cair Pada Pertumbuhan Pakchoy (Brassica rapa L.). Jurnal Biologi Edukasi Edisi12,6(1),34–38.
- Widiwurjani, Guniarti, d an Andansari, P. 2019. Status Kandungan Sulforaphane Microgreens Tanaman Brokoli (Brassica oleracea L.) pada Berbagai Media Tanam dengan Pemberian Air Kelapa sebagai Nutrisi. Jurnal Ilmiah Hijau Cendekia, 4(1): 34–38.
- Wulandari, C., Muhartini, S., dan Trisnowati S. 2012. Pengaruh air cucian beras merah dan beras putih terhadap pertumbuhan dan hasil selada (Lactuca sativa L.). Jurnal Vegetalika 1(2).
- Zulkarnaen, I., dan Irawati, A. F. C. 2018. Prospek pengembangan microgreen dalam mendukung pertanian perkotaan di Jakarta. Buletin Inovasi Pertanian Spesifik Lokasi, 4(2), 127–135.
- Zulkarnain . 2013. Pengaruh Kompos, Pupuk Kandang, dan Custom Bio terhadap Sifat Tanah, Pertumbuhan dan Hasil Tebu (Saccharum Officinarum L.) pada Entisol di Kebun Ngrangkah - Pawon, Kediri. Indonesian Green Technology Journal. 2(1).

LAMPIRAN

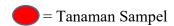
Lampiran 1. Tabel Jadwal Kegiata Penelitian

						Та	ahun	2024	l				
No	Kegiatan		Ma	aret			Ap	oril		Mei			
		1	2	3	4	1	2	3	4	1	2	3	4
1	Persiapan Penelitian	1											
2	Penanaman												
3	Penyiraman						V)//				
4	Peyiraman air leri			U M									
5	Pengamatan Parameter	que e		A	0000								
6	Panen				Λ			V					
7	Pengolahan Data			V	A								
8	Penyusunan Skripsi												


46 Document Accepted 16/12/24

⁻⁻⁻⁻⁻

 $^{1.\,}Dilarang\,Mengutip\,sebagian\,atau\,seluruh\,dokumen\,ini\,tanpa\,mencantumkan\,sumber$


Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

Lampiran 3. Denah Plot

Keterangan:

UNIVERSITAS MEDAN AREA

Document Accepted 16/12/24

^{2.} Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah 3. Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

Lampiran 4. Tabel Rata-Rata Persentase hidup kecambah hari ke 1

Perlakuan		Ular	ngan		
_	1	2	3	Total	Rata-rata
A0M1	0	0	0	0	0,0
A1M1	0	0	0	0	0,0
A2M1	0	0	0	0	0,0
A3M1	0	0	0	0	0,0
A0M2	0	0	0	0	0,0
A1M2	0	0	0	0	0,0
A2M2	0	0	0	0	0,0
A3M2	0	0	0	0	0,0
A0M3	0	0	0	0	0,0
A1M3	0	0	0	0	0,0
A2M3	0	0	0	0	0,0
A3M3	0	0	0	0	0,0
Total				0	0,0

Lampiran 5. Tabel Rata-Rata Persentase hidup kecambah hari ke 2

Perlakuan			Ulangan		
	1	2	3	Total	Rata-rata
A0M1	52	46	48	146	48,7
A1M1	45	50	47	142	47,3
A2M1	47	48	51	146	48,7
A3M1	51	50	47	148	49,3
A0M2	3	5	2	10	3,3
A1M2	7	4	6	17	5,7
A2M2	5	4	6	15	5,0
A3M2	6	5	7	18	6,0
A0M3	38	35	40	113	37,7
A1M3	41	37	39	117	39,0
A2M3	37	40	38	115	38,3
A3M3	39	40	39	118	39,3
Total				1105	30,7

 $^{1.\,}Dilarang\,Mengutip\,sebagian\,atau\,seluruh\,dokumen\,ini\,tanpa\,mencantumkan\,sumber$

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

Lampiran 6. Tabel ANOVA Persentase hidup kecambah hari ke 2

CIZ	Jumlah	DD	KT	E1.:4	Fta	bel	V a4
SK	Kuadrat	DB	K1	Fhit	0.05	0.01	Ket
Perlakuan	46336.667ª	12	3861.389	1037.388	2.22	3.09	**
A	10.889	3	3.630	0.97	3.01	4.72	tn
M	12458.000	2	6229.000	1673	3.40	5.61	**
A M	11.778	6	1.963	0.52	2.51	3.67	tn
Galat	89.333	24	3.722				
Total	46426.000	36					
TZTZ (0/							

KK 6%

Lampiran 7. Tabel Rata-Rata Persentase hidup kecambah hari ke 3

Perlakuan		Ular	ngan		
i ciiakuan =	1	2	3	Total	Rata-rata
A0M1	75	72	74	221	73,7
A1M1	72	78	75	225	75,0
A2M1	60	68	70	198	66,0
A3M1	70	72	70	212	70,7
A0M2	10	12	10	32	10,7
A1M2	15	16	13	44	14,7
A2M2	16	13	14	43	14,3
A3M2	15	16	12	43	14,3
A0M3	69	70	68	207	69,0
A1M3	65	64	63	192	64,0
A2M3	62	61	64	187	62,3
A3M3	63	62	63	188	62,7
Total				1792	49,8

UNIVERSITAS MEDAN AREA

49 Document Accepted 16/12/24

[©] Hak Cipta Di Lindungi Undang-Undang

⁻⁻⁻⁻⁻

 $^{1.\,}Dilarang\,Mengutip\,sebagian\,atau\,seluruh\,dokumen\,ini\,tanpa\,mencantumkan\,sumber$

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

Lampiran 8. Tabel ANOVA Persentase hidup kecambah hari ke 3

CV	Jumlah	DD	VТ	T71.:4	Ftabel	V -4
SK	Kuadrat	DB	KT	Fhit	0.05 0.01	Ket
Perlakuan	113432.667 ^a	12	9452.722	2037.713	3 2.22 3.09	**
A	8.200	3	2.733	0.58	3.01 4.72	tn
M	23969.556	2	11984.778	2583	3.40 5.61	**
A M	17.933	6	2.988	0.64	2.51 3.67	tn
Galat	111.333	24	4.639			
Total	113544.000	36				

KK 4%

Lampiran 9. Tabel Rata-Rata Persentase hidup kecambah hari ke 4

Perlakuan		Ulaı	ngan		
	1	2)	3	Total	Rata-rata
A0M1	78	76	72	226	75,3
A1M1	73	70	73	216	72,0
A2M1	74	76	71	221	73,7
A3M1	77	74	75	226	75,3
A0M2	16	17	13	46	15,3
A1M2	20	18	17	55	18,3
A2M2	21	22	19	62	20,7
A3M2	20	21	20	61	20,3
A0M3	73	70	71	214	71,3
A1M3	72	69	73	214	71,3
A2M3	70	71	70	211	70,3
A3M3	69	72	69	210	70,0
Total				1912	53,1

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

Lampiran 10. Tabel ANOVA Persentase hidup kecambah hari ke 4

SK	Jumlah kuadrat	DB	KT	Fhit	Ftabel		Ket
SIX	Juiman Kuaurat	טט	KI	Tillt	0.05	0.01	KCt
Perlakuan	123889.333ª	12	10324.111	139.149	2.22	3.09	**
A	27.000	3	9.000	1.21	3.01	4.72	tn
M	21693.056	2	10846.528	1461	3.40	5.61	**
AM	37.783	6	6.297	0.84	2.51	3.67	tn
Galat	1780.667	24	7.419				
Total	125670.000	36					

KK 5%

Lampiran 11. Tabel Rata-Rata Persentase hidup kecambah hari ke 5

Perlakuan		Ulaı	ngan		
	1	2)	3	Total	Rata-rata
A0M1	80	81	80	241	80,3
A1M1	78	75	77	230	76,7
A2M1	81	79	80	240	80,0
A3M1	80	78	82	240	80,0
A0M2	24	26	27	77	25,7
A1M2	26	28	25	79	26,3
A2M2	27	25	24	76	25,3
A3M2	25	23	27	75	25,0
A0M3	75	72	75	222	74,0
A1M3	75	74	76	225	75,0
A2M3	72	72	73	217	72,3
A3M3	74	75	77	226	75,3
Total				2148	59,7

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

Lampiran 12. Tabel ANOVA Persentase hidup kecambah hari ke 5

SK	Jumlah	DB	KT	Fhit	Ftabel	Ket
SK	kuadrat	DB	K1	Tillt	0.05 0.01	Kei
Perlakuan	149275.333 ^a	12	12439.611	5892.447	2.22 3.09	**
A	5.556	3	1.852	0.87	3.01 4.72	tn
M	21065.167	2	10532.583	4989	3.40 5.61	**
AM	4.611	6	676	0.32	2.51 3.67	tn
Galat	50.667	24	2.111			
Total	149326.000	36				

Lampiran 13. Tabel Rata-Rata Persentase hidup kecambah hari ke 6

Perlakuan		Ular	ngan		
	1	2	3	Total	Rata-rata
A0M1	83	82	83	248	82,7
A1M1	80	80	81	241	80,3
A2M1	85	82	83	250	83,3
A3M1	84	81	82	247	82,3
A0M2	30	31	31	92	30,7
A1M2	35	30	35	100	33,3
A2M2	31	32	31	94	31,3
A3M2	32	30	33	95	31,7
A0M3	78	76	75	229	76,3
A1M3	79	78	78	235	78,3
A2M3	75	75	78	228	76,0
A3M3	78	76	74	228	76,0
Total				2245	62,4

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

Lampiran 14. Tabel ANOVA Persentase hidup kecambah hari ke 6

SK	Jumlah Kuadrat	DΒ	KT	Fhit	Ftabel		Ket
SK	Juillali Kuaulat	DB	K1	1,1111	0.05	0.01	Ket
Perlakuan	157860.333ª	12	13155.028	235.495	2.22	3.09	**
A	17.586	3	5.862	1.04	3.01	4.72	tn
M	17352.722	2	8676.361	1553	3.40	5.61	**
AM	33.105	6	5.517	0.98	2.51	3.67	tn
Galat	1340.667	24	5.586				
Total	159201.000	36					

KK 4%

Lampiran 15. Tabel Rata-Rata Persentase hidup kecambah hari ke 7

Perlakuan	\/\	Ulaı	ngan		
	/1	2	3	Total	Rata-rata
A0M1	85	84	83	252	84,0
A1M1	82	83	82	247	82,3
A2M1	86	85	84	255	85,0
A3M1	85	84	86	255	85,0
A0M2	40	43	43	126	42,0
A1M2	42	41	45	128	42,7
A2M2	43	45	41	129	43,0
A3M2	45	46	44	135	45,0
A0M3	83	82	83	248	82,7
A1M3	82	81	82	245	81,7
A2M3	79	78	80	237	79,0
A3M3	79	79	80	238	79,3
Total				2495	69,3

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

Lampiran 16. Tabel ANOVA Persentase hidup kecambah hari ke 7

SK	Jumlah kuadrat	DΒ	KT	Fhit	Ftabel	Ket
SK	Juiman Kuaurat	טט	KI	1.1111	0.05 0.01	KCt
Perlakuan	185343.667 ^a	12	15445.306	10491.151	2.22 3.09	**
A	4.972	3	1.657	1.12	3.01 4.72	tn
M	12368.389	2	6184.194	4200	3.40 5.61	**
AM	5.294	6	882	0.59	2.51 3.67	tn
Galat	35.333	24	1.472			
Total	185379.000	36				

Lampiran 17. Tabel Rata-Rata Persentase hidup kecambah hari ke 8

Perlakuan	\/ (Ulaı	ngan		
	1	2	3	Total	Rata-rata
A0M1	87	86	85	258	86,0
A1M1	84	83	82	249	83,0
A2M1	88	87	85	260	86,7
A3M1	87	85	87	259	86,3
A0M2	48	48	53	149	49,7
A1M2	51	51	52	154	51,3
A2M2	48	47	48	143	47,7
A3M2	49	49	48	146	48,7
A0M3	85	84	85	254	84,7
A1M3	83	83	84	250	83,3
A2M3	80	81	80	241	80,3
A3M3	80	80	82	242	80,7
Total				2605	72,4

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

Lampiran 18. Tabel ANOVA Persentase hidup kecambah hari ke 8

SK	Jumlah kuadrat	DB KT		Fhit	Ftabel	Ket
SK	Juman Kuadiat	DВ	K1	FIIIt	0.05 0.01	Ket
Perlakuan	198196.333 ^a	12	16516.361	11434.404	2.22 3.09	**
A	1.875	3	625	0.43	3.01 4.72	tn
M	9608.389	2	4804.194	3325	3.40 5.61	**
AM	6.850	6	1.141	0.79	2.51 3.67	tn
Galat	34.667	24	1.444			
Total	198231.000	36				

Lampiran 19. Tabel Rata-Rata Persentase hidup kecambah hari ke 9

Perlakuan		Ular	ngan		
	1	2 /	3	Total	Rata-rata
A0M1	88	88	89	265	88,3
A1M1	85	86	85	256	85,3
A2M1	89	88	89	266	88,7
A3M1	87	87	88	262	87,3
A0M2	56	55	54	165	55,0
A1M2	54	53	54	161	53,7
A2M2	58	56	55	169	56,3
A3M2	55	55	54	164	54,7
A0M3	88	89	88	265	88,3
A1M3	84	83	85	252	84,0
A2M3	81	81	83	245	81,7
A3M3	82	82	83	247	82,3
Total				2717	75,5

eriak Cipta Di Liliddiigi Olidalig-Olidalig

 $^{1.\,}Dilarang\,Mengutip\,sebagian\,atau\,seluruh\,dokumen\,ini\,tanpa\,mencantumkan\,sumber$

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

Lampiran 20. Tabel ANOVA Persentase hidup kecambah hari ke 9

SK	Jumlah kuadrat	DB KT		Fhit	Ftabel	Ket
SIX	Juman Kuadrat	DD	KI	Tillt	0.05 0.01	Ket
Perlakuan	7862.083 ^a	12	714.735	643.261	2.22 3.09	**
A	3.275	3	1.091	0.98	3.01 4.72	tn
M	7768.667	2	3884.333	3495	3.40 5.61	**
AM	6.066	6	1.011	0.91	2.51 3.67	tn
Galat	26.667	24	1.111			
Total	213551.000	36				

KK 1%

Lampiran 21. Tabel Rata-Rata Persentase hidup kecambah hari ke 10

Perlakuan		Ular	ngan		
	1	2 ~	3	Total	Rata-rata
A0M1	90	91	90	271	90,3
A1M1	90	89	89	268	89,3
A2M1	89	87	90	266	88,7
A3M1	91	90	89	270	90,0
A0M2	58	59	57	174	58,0
A1M2	57	56	59	172	57,3
A2M2	60	61	62	183	61,0
A3M2	61	60	60	181	60,3
A0M3	88	87	88	263	87,7
A1M3	86	86	88	260	86,7
A2M3	84	85	86	255	85,0
A3M3	85	84	84	253	84,3
Total				2816	78,2

S Hak Cipta Di Lindungi Ondang-Ondang

 $^{1.\,}Dilarang\,Mengutip\,sebagian\,atau\,seluruh\,dokumen\,ini\,tanpa\,mencantumkan\,sumber$

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

Lampiran 22. Tabel ANOVA Persentase hidup kecambah hari ke 10

SK	Jumlah	DB	KT	Fhit	Ftabel	Ket
SK	Kuadrat	DВ	K1	FIIIt	0.05 0.01	Net
Perlakuan	226944.667 ^a	12	18912.056	19452.400	2.22 3.09	**
A	3.556	3	1.185	1.21	3.01 4.72	tn
M	6616.722	2	3308.361	3403	3.40 5.61	**
AM	5.061	6	843	0.86	2.51 3.67	tn
Galat	23.333	24	972			
Total	226968.000	36				

KK 1%

Lampiran 23. Tabel Rata-Rata Persentase hidup kecambah hari ke 11

Perlakuan	Ulangan						
)/1	2	3	Total	Rata-rata		
A0M1	92	91	92	275	91,7		
A1M1	92	89	91	272	90,7		
A2M1	94	92	90	276	92,0		
A3M1	92	91	92	275	91,7		
A0M2	62	60	62	184	61,3		
A1M2	60	64	65	189	63,0		
A2M2	65	65	63	193	64,3		
A3M2	63	62	63	188	62,7		
A0M3	89	89	92	270	90,0		
A1M3	89	92	91	272	90,7		
A2M3	86	90	92	268	89,3		
A3M3	88	89	91	268	89,3		
Total				2930	81,4		

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

^{2.} Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah 3. Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

Lampiran 24. Tabel ANOVA Persentase hidup kecambah hari ke 11

CV	Jumlah Kuadrat	DB	KT	E1.:4	Ftabel	Ket
SK	SK Jumian Kuadrai		K1	Fhit	0.05 0.01	Ket
Perlakuan	244281.667 ^a	12	20356.806	7478.010	2.22 3.09	**
A	6.083	3	2.028	0.74	3.01 4.72	tn
M	6271.722	2	3135.861	1152	3.40 5.61	**
AM	22.500	6	3.750	1.37	2.51 3.67	tn
Galat	65.333	24	2.722			
Total	244347.000	36				

Lampiran 25. Tabel Rata-Rata Persentase hidup kecambah hari ke 12

Perlakuan		Ular	ngan		
	1	2	3	Total	Rata-rata
A0M1	92	90	93	275	91,7
A1M1	92	89	91	272	90,7
A2M1	94	92	90	276	92,0
A3M1	93	90	91	274	91,3
A0M2	64	58	62	184	61,3
A1M2	62	63	65	190	63,3
A2M2	66	65	63	194	64,7
A3M2	64	62	63	189	63,0
A0M3	90	89	91	270	90,0
A1M3	91	90	91	272	90,7
A2M3	89	90	92	271	90,3
A3M3	92	88	90	270	90,0
Total				2937	81,6

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

Lampiran 26. Tabel ANOVA Persentase hidup kecambah hari ke 12

SK	Jumlah Kuadrat	DB	KT	Fhit	Ftabel	Ket
SK	Juman Kuadrat	DΒ	KI	THII	0.05 0.01	Ket
Perlakuan	245910.667 ^a	12	20492.556	7527.878	2.22 3.09	**
A	2.333	3	778	0.28	3.01 4.72	tn
M	6131.722	2	3065.861	1126	3.40 5.61	**
AM	3.167	6	528	0.19	2.51 3.67	tn
Galat	65.333	24	2.722			
Total	245976.000	36				

Lampiran 27. Tabel Rata-Rata Persentase hidup kecambah hari ke 13

Perlakuan	Ulangan						
	1	2	3	Total	Rata-rata		
A0M1	92	90	93	275	91,7		
A1M1	92	89	91	272	90,7		
A2M1	94	92	90	276	92,0		
A3M1	93	90	91	274	91,3		
A0M2	64	58	62	184	61,3		
A1M2	62	63	65	190	63,3		
A2M2	68	65	63	196	65,3		
A3M2	65	62	63	190	63,3		
A0M3	90	89	91	270	90,0		
A1M3	91	90	91	272	90,7		
A2M3	89	90	90	269	89,7		
A3M3	92	88	90	270	90,0		
Total				2938	81,6		

Lampiran 28. Tabel ANOVA Persentase hidup kecambah hari ke 13

SK	Jumlah Kuadrat	DB	KT	Fhit	Ftabel	Ket
SK	Juman Kuadrat	υυ	KI	1'1111	0.05 0.01	Ket
Perlakuan	245448.000 ^a	12	20454.000	7219.059	2.22 3.09	**
A	3.333	3	1.111	0.39	3.01 4.72	tn
M	5990.389	2	2995.194	1057	3.40 5.61	**
AM	7.167	6	1.194	0.42	2.51 3.67	tn
Galat	68.000	24	2.833			
Total	245516.000	36				

Lampiran 29. Tabel Rata-Rata Persentase hidup kecambah hari ke 14

Perlakuan		Ular	ngan		
	1	2	3	Total	Rata-rata
A0M1	92	90	93	275	91,7
A1M1	92	89	91	272	90,7
A2M1	94	92	90	276	92,0
A3M1	93	90	91	274	91,3
A0M2	64	58	62	184	61,3
A1M2	62	63	65	190	63,3
A2M2	68	65	63	196	65,3
A3M2	65	62	63	190	63,3
A0M3	90	89	91	270	90,0
A1M3	91	90	91	272	90,7
A2M3	89	91	91	271	90,3
A3M3	92	88	90	270	90,0
Total				2940	81,7

S Hak Cipta Di Elliduligi Olidalig-Olidalig

 $^{1.\,}Dilarang\,Mengutip\,sebagian\,atau\,seluruh\,dokumen\,ini\,tanpa\,mencantumkan\,sumber$

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

Lampiran 30. Tabel ANOVA Persentase hidup kecambah hari ke 14

SK	Invalate Vivaduat	DD	KT	Fhit	Ftabel	IV at
	Jumlah Kuadrat	DB	K1	LIIII	0.05 0.01	Ket
Perlakuan	245808.000 ^a	12	20484.000	7023.086	2.22 3.09	**
A	5.444	3	1.815	0.62	3.01 4.72	tn
M	6024.056	2	3012.028	1032	3.40 5.61	**
AM	5.056	6	843	0.28	2.51 3.67	tn
Galat	70.000	24	2.917			
Total	245878.000	36				

Lampiran 31. Tabel Rata-Rata Tinggi Tanaman (cm) 7 HST

Perlakuan -			Ulangan		
Periakuan -	1	2	3	Total	Rata-rata
A0M1	5,32	5,87	5,71	16,90	5,63
A1M1	5,50	5,51	5,86	16,87	5,62
A2M1	5,86	6,13	6,06	18,05	6,02
A3M1	5,21	5,75	5,95	16,91	5,64
A0M2	3,15	2,96	2,58	8,69	2,90
A1M2	2,73	2,55	2,72	8,00	2,67
A2M2	3,20	2,91	3,45	9,56	3,19
A3M2	3,13	3,25	2,75	9,13	3,04
A0M3	5,14	4,87	4,64	14,65	4,88
A1M3	5,02	4,47	4,67	14,16	4,72
A2M3	4,92	4,29	4,62	13,83	4,61
A3M3	4,80	4,50	4,49	13,79	4,60
Total				160,54	4,46

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

^{2.} Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah 3. Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

Lampiran 32. Tabel ANOVA Tinggi Tanaman (cm) 7 HST

SK	Jumlah	DD	TZT.	F1 **	Fta	ibel	17. 4
	Kuadrat	DB	KT	Fhit	0.05	0.01	Ket
Perlakuan	345.596	12	31.417	14.805	2.22	3.09	**
A	493	3	164	0.87	3.01	4.72	tn
M	38.902	2	19.451	103	3.40	5.61	**
AM	1.175	6	196	1.04	2.51	3.67	tn
Galat	4.511	24	188				
Total	350.107	36	70				

KK 15%

Lampiran 33. Tabel Rata-Rata Tinggi Tanaman (cm) 14 HST

Perlakuan –		Ulangan			
renakuan –	1	2	3	Total	Rata-rata
A0M1	5,32	5,87	5,71	16,90	5,63
A1M1	5,50	5,51	5,86	16,87	5,62
A2M1	5,86	6,13	6,06	18,05	6,02
A3M1	5,21	5,75	5,95	16,91	5,64
A0M2	3,15	2,96	2,58	8,69	2,90
A1M2	2,73	2,55	2,72	8,00	2,67
A2M2	3,20	2,91	3,45	9,56	3,19
A3M2	3,13	3,25	2,75	9,13	3,04
A0M3	5,14	4,87	4,64	14,65	4,88
A1M3	5,02	4,47	4,67	14,16	4,72
A2M3	4,92	4,29	4,62	13,83	4,61
A3M3	4,80	4,50	4,49	13,79	4,60
Total				160,54	4,46

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

^{2.} Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah 3. Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

Lampiran 34. Tabel ANOVA Tinggi Tanaman (cm) 14 HST

	Jumlah				Fta	bel	
SK	kuadrat	DB	KT	Fhit			ket
	Kuadrat				0.05	0.01	
							**
Perlakuan	764.262 ^a	12	63.688	964	2.22	3.09	
A	336	3	112	1.69	3.01	4.72	tn
	330		112	1.07	5.01	7.72	
M	47.406	2	23.703	358	3.40	5.61	**
AM	600	6	100	1.51	2.51	3.67	tn
	000		100	1.31	2.31	3.07	
Galat	1.589	24	66				
Total	765.850	36					

KK 6%

Lampiran 35. Tabel Rata-Rata Jumlah Daun (helai) 7 HST

Perlakuan		Ulanga	ın		
	1	2	3	Total	Rata-rata
A0M1	2	2, -	2	6	2
A1M1	2	2	2	6	2
A2M1	2	2	2	6	2
A3M1	2	2	2	6	2
A0M2	2	2	2	6//	2
A1M2	2	2	2	6	2
A2M2	2	$2 \top$	2	6	2
A3M2	2	2	2	6	2
A0M3	2	2	2	6	2
A1M3	2	2	2	6	2
A2M3	2	2	2	6	2
A3M3	2	2	2	6	2
Total	24	24	24	72	
Rata-rata	2	2	2		2

Lampiran 36. Tabel Rata-Rata Jumlah Daun (helai) 14 HST

Perlakuan		Ulanga	an		
	1	2	3	Total	Rata-rata
A0M1	3	3	3	9	3
A1M1	3	3	3	9	3
A2M1	3	3	3	9	3
A3M1	3	3	3	9	3
A0M2	3	3	3	9	3
A1M2	3	3	3	9	3
A2M2	3	3	3	9	3
A3M2	3	3	3	9	3
A0M3	3	3	3	9	3
A1M3	3	3	3	9	3
A2M3	3	3	3	9	3
A3M3	3	3	3	9	3
Total	36	36	36		108
Rata-rata	3	3		3	3

Lampiran 37. Tabel Rata – rata berat pertanaman

Perlakuan		Ulaı			
	1 1	2	3	Total	Rata-rata
A0M1	0,014	0,012	0,014	0,041	0,013
A1M1	0,013	0,015	0,014	0,042	0,014
A2M1	0,015	0,016	0,015	0,046	0,015
A3M1	0,014	0,013	0,014	0,041	0,014
A0M2	0,013	0,012	0,012	0,037	0,012
A1M2	0,012	0,013	0,011	0,036	0,012
A2M2	0,012	0,013	0,013	0,038	0,013
A3M2	0,012	0,013	0,012	0,037	0,012
A0M3	0,012	0,014	0,013	0,039	0,013
A1M3	0,013	0,014	0,012	0,039	0,013
A2M3	0,014	0,011	0,013	0,038	0,013
A3M3	0,012	0,013	0,014	0,039	0,013
Total				0,472	0,013

64

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

Lampiran 38. Tabel ANOVA berat pertanaman

SK	Jumlah kuadrat	DB	KT	Fhit	Fta	bel	** tn tn tn
					0.05	0.01	
Perlakuan	.013ª	12	.001	3.438	2.22	3.09	**
A	.001	3	.000	0.93	3.01	4.72	tn
M	.001	2	.000	1.43	3.40	5.61	tn
AM	.002	6	.000	1.00	2.51	3.67	tn
Galat	.008	24	.000				
Total	.020	36					

KK 139%

Lampiran 39 . Tabel Rata-Rata Berat Segar/plot

Perlakuan	$\smile / -$	Ulanga	n		
	1	2	3	Total	Rata-rata
A0M1	1,459	1,359	1,420	4,238	1,413
A1M1	1,499	1,521	1,457	4,477	1,492
A2M1	1,542	1,630	1,550	4,722	1,574
A3M1	1,433	1,459	1,457	4,349	1,450
A0M2	1,310	1,334	0,897	3,541	1,180
A1M2	0,901	0,937	0,911	2,749	0,916
A2M2	0,857	0,923	0,981	2,761	0,920
A3M2	0,891	0,877	0,978	2,746	0,915
A0M3	1,150	1,221	1,170	3,541	1,180
A1M3	1,120	1,132	1,170	3,422	1,141
A2M3	0,973	1,133	1,191	3,297	1,099
A3M3	1,125	1,211	1,210	3,546	1,182
Total				43,389	1,205

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

Lampiran 40 . Tabel ANOVA Berat Segar/plot

SK	Jumlah	DB	KT	Fhit	Ftabel		Ket
<u> </u>	Kuadrat	סט	K1	riiit	0.05	0.01	Net
Perlakuan	54.076 ^a	12	4.506	563.291	2.22	3.09	**
A	0.034	3	0.011	1.37	3.01	4.72	tn
M	1.547	2	774	96.67	3.40	5.61	**
AM	0.179	6	0.030	3.75	2.51	3.67	**
Galat	0.182	24	0.008				
Total	54.259	36					

KK 7%

Lampiran 41. Tabel Rata-Rata Panjang Akar (cm)

Perlakuan)/	Ula	angan	140	
	1	2	3	Total	Rata-rata
A0M1	5,81	6,03	6,09	17,93	5,98
A1M1	6,08	5,99	6,05	18,12	6,04
A2M1	6,52	6,70	6,70	19,92	6,64
A3M1	5,89	6,17	6,03	18,09	6,03
A0M2	1,33	1,57	1,45	4,35	1,45
A1M2	1,78	1,56	1,48	4,82	1,61
A2M2	1,26	1,54	1,52	4,32	1,44
A3M2	1,60	1,53	1,47	4,60	1,53
A0M3	3,12	3,39	3,35	9,86	3,29
A1M3	3,29	3,20	3,39	9,88	3,29
A2M3	3,25	3,35	3,53	10,13	3,38
A3M3	3,35	3,56	3,40	10,31	3,44
Total				132	3,68

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

Lampiran 42. Tabel ANOVA Panjang Akar (cm)

	Jumlah				Fta	bel	
SK	V J t	DB	KT	Fhit			Ket.
	Kuadrat				0.05	0.01	
Perlakuan	124 2508	12	11 105	746 200			**
Periakuan	134.350 ^a	12	11.195	746.388	2.22	3.09	
A	0.237	3	0.079	5.26	3.01	4.72	**
	0.237	3	0.079	3.20	3.01	4.72	
M	133.327	2	66.663	441	3.40	5.61	**
43.6							**
AM	0.785	6	0.131	8.73	2.51	3.67	**
Galat	0.262	24	0.015				
	0.362	24	0.015				
Total	619.666	36	DI V				

KK 3%

Lampiran 43. Data Suhu Dan Kelembaban Ruangan

No	Tanggal	Suhu (°C)	Kelembapan %
1	16 – 4 – 2024	34.2	73
2	17 – 4 – 2024	35.1	71
3	18 – 4 – 2024	34.4	73
4	19 – 4 – 2024	35.1	71
5	20 – 4 – 2024	32.5	75
6	21 – 4 – 2024	34.3	74
7	22 – 4 – 2024	30.9	77
8	23 – 4 – 2024	32.1	76
9	24 – 4 – 2024	31.3	78
10	25 – 4 – 2024	33.5	75
11	26 – 4 – 2024	34.5	73
12	27 – 4 – 2024	31.7	78/
13	28 – 4 – 2024	28.5	82
14	29 – 4 – 2024	29.6	81
	Rata – rata	32,69 (°C)	75,5%

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

Lampiran 44. Hasil Uji Laboratorium Air Leri

UNIVERSITAS SUMATRA UTARA FAKULTAS PERTANIAN LABORATORIUM RISET Jalan. Prof. A. Sofyan. No. 03.Kampus USU Medan – 20155

HASIL ANALISIS

Pemilik : Dipo Ridho Utomo

Nim/Kampus : 208210054/Universitas Medan Area

Jenis Sampel : Air cucian beras Jumlah : 4 Sampel

Sampel 1

- 1 H		Sampel	
Parameter	Satuan	Air cucian beras	
N-total	%	0.12	
P	%	0.27	
K	%	1.04	

Sampel 2

D	Catuan	Sampel Air cucian beras	
Parameter	Satuan		
N-total	%	0.10	
P	%	0.27	
K	%	1.01	

Sampel 3

Salara da	5.1	Sampel Air cucian beras	
Parameter	Satuan		
N-total	%	0.13	
P	%	0.25	
K	%	1.02	

UNIVERSITAS MEDAN AREA

69

Document Accepted 16/12/24

Sampel 4

Parameter	C-1	Sampel	
	Satuan	Air cucian beras	
N-total	%	0.14	
P	%	0.28	
K	%	1.06	

UNIVERSITAS MEDAN AREA

 $70 \\ \text{Document Accepted 16/12/24}$

Lampiran 45. Hasil Uji Laboratorium Cocopeat dan Arang Sekam

UNIVERSITAS SUMATRA UTARA FAKULTAS PERTANIAN LABORATORIUM RISET Jalan. Prof. A. Sofyan. No. 03.Kampus USU Medan – 20155

HASIL ANALISIS

Pemilik : Dipo Ridho Utomo

Nim/Kampus : 208210054/Universitas Medan

Jenis Sampel: 1. Cocopeat

2. Arang Sekam

Jumlah : 2 Sampel

			Parameter		
Sampel	pH(H₂O)	C - Organik %	N – total %	P %	K %
Cocopeat	5.86	12.1	0.82	0.66	0.83
Arang Sekam	6.15	14.7	0.32	0.15	0.31

Lampiran 46. Dokumentasi Penelitian

Persiapan Penelitian

Pencucian Cocopeat

Penjemuran Cocopeat

Pengisian Nampan

Penimbangan Media Tanam

Peresiapan Penanaman

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

Penaburan Benih

Penyiraman Setelah Tanam

Pemberian Air Leri Ke 1

Pemberian Air Leri Ke 2

Pemberian Air Leri Ke 3

Pemberian Air Leri Ke 4

7 Hari Setelah Tanaman

Pengamatan parameter

14 Hari Setelah Tanaman

Pemananenan

Kompos

© Hak Cipta Di Lindungi Undang-Undang

- 1. Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber
- Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

74 Document Accepted 16/12/24