LAPORAN MAGANG MBKM

PROSES PENGOLAHAN KELAPA SAWIT MENJADI CRUDE PALM OIL (CPO)

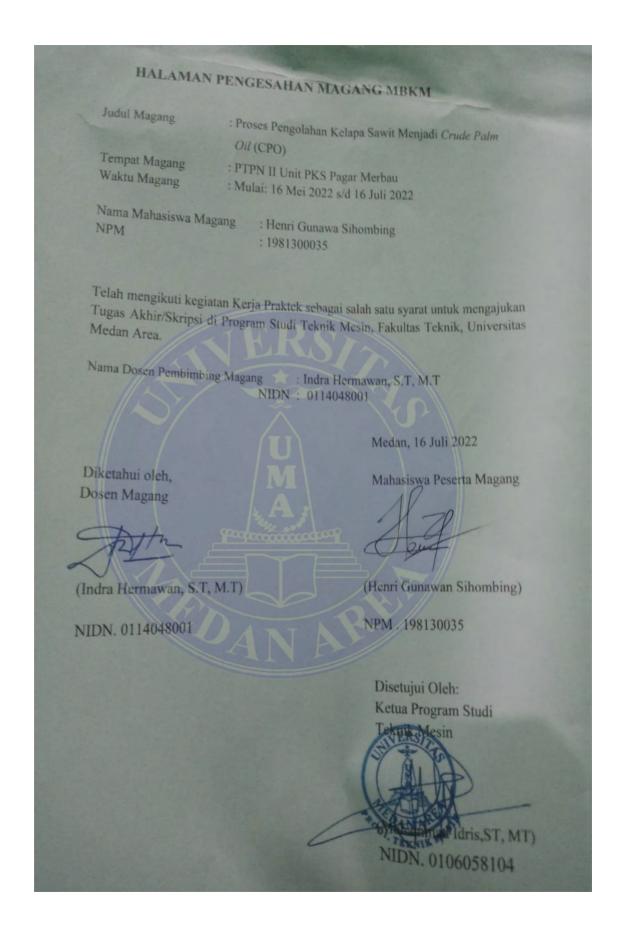
MAHASISWA MAGANG : HENRI GUNAWAN SIHOMBING / 198130035

PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MEDAN AREA MEDAN 2023

LAPORAN MAGANG MBKB

PROSES PENGOLAHAN KELAPA SAWIT MENJADI CRUDE PALM OIL (CPO)

Diajukan Sebagai Salah Satu Syarat Untuk Pengajuan Tugas Akhir Di Program Studi Teknik Mesin Fakultas Teknik Universitaas Medan Area


> Mahasiswa Magang Henri Gunawan Sihombing / 198130035

> > Dosen Pembimbing:

INDRA HERMAWAN, ST, MT / 0114048001

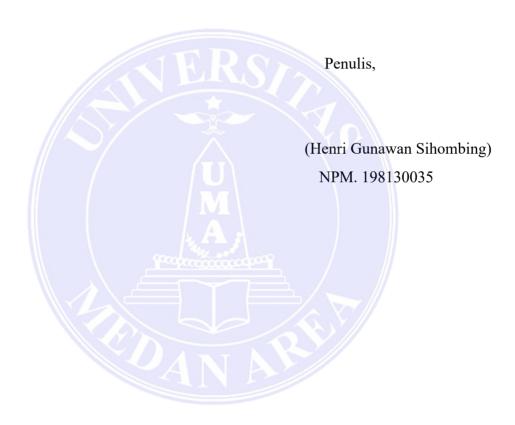
PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MEDAN AREA MEDAN 2023

iii

ii

KATA PENGANTAR

Puji dan syukur kehadirat Tuhan Yang Maha Esa oleh karna berkat dan ridho-Nya sehingga kami dapat menyelesaikan praktek kerja lapangan, terima kasih yang sebesar-besarnya kepada Tuhan sang pencipta yang telah memberi penulis kesabaran, Kesehatan dan kebijaksanaan karena sungguh suatu hal yang sangat sulit yang menguji ketekunan dan kesabaran untuk tidak pantang menyerah dalam menyelesaikan laporan ini.


Pembuatan laporan magang ini merupakan salah satu syarat untuk menyelesaikan studi pada program studi strata satu (S1) Jurusan Teknik Mesin Fakultas Teknik Universitas Medan Area. Adapun judul laporan Magang yang diambil adalah "prosedur kerja PTPN II Unit PKS Pagar Merbau". Penulis menyadari bahwa dalam menyelesaikan laporan Magang ini tidak terlepas dari dukungan, bantuan serta bimbingan dari berbagai pihak.

Oleh karena itu, penulis ingin menyampaikan ucapan terima kasih yang sebesar-besarnya kepada :

- 1. Bapak Prof. Dr. Dandan Ramdan, M.Eng, M.Sc. Selaku Rektor Universitas Medan Area
- 2. Bapak Dr. Rahmad Syah, S.Kom, M.Kom. Selaku Dekan Fakultas Teknik Universitas Medan Area
- 3. Bapak Muhammad Idris, ST, MT Selaku Ketua Program Studi Teknik Mesin Fakultas Teknik Universitas Medan Area.
- 4. Bapak Dr. Iswandi, ST, MT Selaku Sekretaris dan Koordinator Magang Program Studi Teknik Mesin Fakultas Teknik Univesitas Medan Area.
- 5. Indra Hermawan, S.T, M.T Selaku Dosen Pembimbing Kerja Praktek.
- 6. Bapak PT. Perkebunan Nusantara II, PKS Pagar Merbau.
- 7. Bapak Jastin Siregar Selaku pembimbing lapangan dalam melaksanakan kerja praktek di PKS Pagar Merbau.
- 8. Seluruh karyawan dan karyawati PT.Perkebunan Nusantara II, PKS Pagar Merbau.

iii

- 9. Bapak Direksi PT. Perkebunan Nusantara II, Yang telah memberikan Izin dan Kesempatan untuk saya melakukan Magang di PKS Pagar Merbau.
- 10. A.sihombing dan J.sihite sebagai orang tua saya yang telah memberikan dukungan dan doa untuk saya dalam program Magang ini.

ii

DAFTAR ISI

	NGOLAHAN KELAPA SAWII MENJADI CRUDE PALM OIL	
	PENGESAHAN MAGANG (MBKM)	
	GANTAR	
	AMBAR	
BAB I PENL	DAHULUAN	1
1.1. Lat	tar Belakang	1
	ijuan Magang	
1.3. Ma	anfaat Magang	2
1 3	3.1. Bagi Mahasiswa	2
1.3	3.2. Bagi Jurusan	2
	3.3. Bagi perusahaan	
	mpat dan Waktu Pelaksanaan Magang	
	etodologi Magang	
BAB 2 TINJA	AUAN UMUM PERUSAHAAN	4
2.1 Sei	jarah Perusahaan	4
	si dan Misi Perusahaan	
	uang Lingkup Bidang Usaha	
	nerah Pemasaran	
	ruktur Organisasi Perusahaan	
	mber Daya Manusia	
	6.1. Tenaga Kerja	
	6.2. Jam kerja	
BAB 3 SISTE	EM KERJA PERUSAHAAN	11
3.1. Me	esin Dan Peralatan	11
3.2. Bal	ıhan Baku Pabrik Kelapa Sawit	17
3.3. Blo	ock Diagram	18
3.4. Laı	ngkah Kerja	19
3.5. Sta	asiun Penerimaan TBS	19
3.5	5.1. Jembatan Timbang	10
	5.2. Sortasi TBS	
	5.3. Loading Ramp	
	5.4. Stasiun Perebusan	
	3.5.4.1. Klarifikasi Sterilizer	
	3.5.4.2. Komponen Rebusan	
	3.5.4.3. Lori	28
3.5	5.5. Stasiun Bantingan (Thresher)	29

iii

	3.5.5.1.	Hoisting Crane	. 29
	3.5.5.2. 3.5.5.3. 3.5.5.4. 3.5.5.5. 3.5.5.6. Fruit Ele	Hopper Automatic Feeder Threser Empty Bunch Conveyor Under Threser Conveyor, Bottom Cross Conveyor, vator, dan Fruit Distributing Conveyor	. 30 . 30 . 31
3.5.6.	Stasiun P	engempaan	. 32
	3.5.6.1. 3.5.6.2. 3.5.6.3.	Digester	. 33
3.5.7.	Stasiun P	emurnian Minyak (Klarifikasi)	. 34
3.5.8.	3.5.7.1. 3.5.7.2. 3.5.7.3. 3.5.7.4. 3.5.7.5. 3.5.7.6. 3.5.7.7. 3.5.7.8. 3.5.7.9. Pengolah 3.5.8.1.	Sand Trap Tank Vibro Separator (Saringan Bergetar) Crude Oil Tank (COT) Balance Tank Vertical Continous Tank (VCT) Oil Tank Vacum Dryer Bak Transfer Storage Tank an Sludge Sludge Tank	. 35 . 36 . 36 . 37 . 37 . 38 . 38
	3.5.8.2.	Sludge Separator	
3.5.9.	Stasiun k	Kernel	
3.5 3.5	5.9.4. Nu 5.9.5. Dr 5.9.6. Dr 3.5.9.7. 3.5.9.8. 3.5.9.9. 3.5.9.10. 3.5.9.11. 3.5.9.12. 3.5.9.13.	Depericarper Nut Polishing Drum It Elevator It Silo It Your Conveyor It Your Conveyor It Your Conveyor It Your Conveyor In Your Con	. 41 . 42 . 43 . 43 . 43 . 44 . 44 . 45 . 45
3.5.10.		Pengolahan Air (WaterTratmment)	

ii

3.5.10.2. Chimber 50 3.5.10.3. Claryfier 50 3.5.10.4. Water Busin 5	_
3.5.10.4. Water Busin	0
	0
2.5.10.5.01.1711.	1
3.5.10.5. Sand Filter	1
3.5.10.6. Water Tower Tank	2
3.5.10.7. Demint Plant	2
3.5.10.8. Deperator Tank	
3.5.10.9. Feed Water Tank	
3.5.11. Boiler / Ketel Uap	4
3.5.11.1. Proses Kerja Boiler	6
3.5.11.2. BPV (Back Pressure Vessel)	
3.5.11.3. Turbin	
3.5.11.4. Genset	
3.5.12. Pengolahan Air Limbah	1
3.5.12.1. Bak Recovery Tank (sludge Recofivery)	1
3.5.12.2. Fat Fit	
3.5.12.3. Kolam Penampung Limbah	
3.6. Produk Hasil Pengolahan TBS	
3.7. Tugas Khusus Mahasiswa Kerja Praktek	
BAB 4 PENUTUP69	
3.8. Kesimpulan	9
3.9. Saran	0
REFERENSI	1
LAMPIRAN 1 : Catatan Harian Magang	
LAMPIRAN 2 : Dokumentasi Magang	
LAM IKAN 2. Dokumentasi Magang	J
DAFTAR GAMBAR	
DAFTAR GAMBAR	
	5
Gambar 2. 1. Visi dan Misi PTPN II	
Gambar 2. 1. Visi dan Misi PTPN II	7
Gambar 2. 1. Visi dan Misi PTPN II	7 8
Gambar 2. 1. Visi dan Misi PTPN II	7 8 0
Gambar 2. 1. Visi dan Misi PTPN II	7 8 0 2
Gambar 2. 1. Visi dan Misi PTPN II	7 8 0 2
Gambar 2. 1. Visi dan Misi PTPN II Gambar 2. 2. Struktur Organisasi PTPN II PKS Pagar Merbau Gambar 3. 1. Block Diagram Gambar 3. 2. Sortasi TBS Gambar 3. 3. Loading Ramp Gambar 3. 4. Sterilizer vertical Gambar 3. 5. Sterilizer Horizontal	7 8 0 2 3 4
Gambar 2. 1. Visi dan Misi PTPN II	7 8 0 2 3 4 5
Gambar 2. 1. Visi dan Misi PTPN II Gambar 2. 2. Struktur Organisasi PTPN II PKS Pagar Merbau Gambar 3. 1. Block Diagram Gambar 3. 2. Sortasi TBS Gambar 3. 3. Loading Ramp Gambar 3. 4. Sterilizer vertical Gambar 3. 5. Sterilizer Horizontal Gambar 3. 6. Katub pengaman (Safetyvalve) Gambar 3. 7. Pipa uap dari BPV (Back PressureVessel)kePerebusan (Pipa Steam)	7 8 0 2 3 4 5 5
Gambar 2. 1. Visi dan Misi PTPN II	7 8 0 2 3 4 5 5 6

iii

© Hak Cipta Di Lindungi Undang-Undang

Gambar 3. 10. Katub untuk membuanguap basah(Condensate Valve)	26
Gambar 3. 11. Indikator pengukuran tekanan (Barometer)	27
Gambar 3. 12. Perebusan (Sterilizer)	27
Gambar 3. 13. Jembatan Lori (Cantilever railbridge)	28
Gambar 3. 14. Lori	28
Gambar 3. 15. Alat penarik (capstand)	28
Gambar 3. 16. Hoisting Crane	29
Gambar 3. 17. Hopper	30
Gambar 3. 18. Automatic Feeder	30
Gambar 3. 19. Threser	31
Gambar 3. 20. Empty Bunch Conveyor	31
Gambar 3. 21. Digester	33
Gambar 3. 22. Screw Press	33
Gambar 3. 23. Cake Breaker Conveyor (CBC)	34
Gambar 3. 24. Sand Trap Tank	34
Gambar 3. 25. Vibro Separator	35
Gambar 3. 26. Crude Oil Tank	
Gambar 3. 27. Vertical Continous Tank	36
Gambar 3. 28. Oil Tank	37
Gambar 3. 29. Vacum Dryer	38
Gambar 3. 30. Storage Tank	39
Gambar 3. 31. Sludge Tank	39
Gambar 3. 32. Sludge Seperator	40
Gambar 3. 33. Depericarper	
Gambar 3. 34. Polishing Drum	
Gambar 3. 35. Wet Nut Elevator	
Gambar 3. 36. Nut Silo	43
Gambar 3. 37. Nut Grading Drum	44
Gambar 3. 38. Ripple Mill	44
Gambar 3. 39. LTDS 1	
Gambar 3. 40. LTDS 2	45
Gambar 3. 41. Claybath	
Gambar 3. 42. Kernel Silo.	
Gambar 3. 43. Bulking	48
Gambar 3. 44. Claryfier	51
Gambar 3. 45. Water Busin	
Gambar 3. 46. Sand Filter	
Gambar 3. 47. Water Tower Tank	52
Gambar 3. 48. Demint Plant	
Gambar 3. 49. Feed Water Tank	53
Gambar 3. 50. Deperator Tank	
Gambar 3. 51. (a) Furnace (b) Boiler	
Gambar 3. 52. Back Preassure Vessel	
Gambar 3. 53. Turbin	
Gambar 3. 54. Genset	
Gambar 3. 55. Bak Recovery Tank	

ii

© Hak Cipta Di Lindungi Undang-Undang

Gambar 3. 56. Fat Fit	62
Gambar 3. 57. Kolam Penampung Limbah	62

iii

BAB 1 PENDAHULUAN

1.1. Latar Belakang

Dalam perkembangan teknologi yang berkembang sangat pesat saat ini diperlukan sumber daya manusia yang handal dan berkualitas sehingga mampu mengimbangi perkembangan teknologi tersebut. Oleh karena itu, keahlian dan keterampilan adalah modal utama yang harus dimiliki oleh seorang calon sumber daya manusia yang berkualitas. Dalam hal ini, mahasiswa adalah salah satu sumber daya manusia berkualitas yang diharapkan mampu bersaing mengiringi perrkembangan teknologi yang terus berkembang. Landasan-landasan teori dan keahlian yang dimiliki oleh tiap individu perlu diterapkan dan dikembangkan secara langsung di lapangan sehingga akan terjadi suatu perbandingan antara kenyataan dilapangan dengan landasan teori yang dipelajari di institusi pendidikan, diharapkan akan menghasilkan suatu gagasan-gagasan baru yang akan bermanfaat bagi perkembangan teknologi mendatang.

Kerja praktek sangat penting peranan dalam menunjang segala teori dan praktek yang diperoleh. Diperlukan suatu tempat yang dapat mengaplikasikan ilmu yang dimiliki sehingga dapat mengembangkannya menjadi suatu ide-ide keatif dalam memanfaatkan teknologi secara kreatif yang diharapkan dapat menyempurnakan teknologi yang ada sebelumnya. Perguruan tinggi merupakan sarana pembentukan sumber daya manusia yang diharapkan mampu mengaplikasikan teori yang ada dengan keadaan di lapangan sejalan dengan perkembangan kemajuan ilmu pengetahuan dan Teknologi (IPTEK). Dengan diberikan suatu kesempatan oleh pihak institusi pendidikan kepada setiap mahasiswa untuk mengaplikasikan ilmu pengetahuan yang diperoleh ada saat kuliah.

Dalam pelaksanaan magang, mahasiswa berperan serta dan ikut dalam bekerja sekaligus menggali ilmu pada saat bekerja. Mahasiswa juga meganalisa, meneliti, dan membahas masalah itu ke dalam karya akhir sehinggga mendapatkan

improvisasi untuk perusahaan atau juga pengalaman tambahan kedepannya. UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

1.2. **Tujuan Magang**

Adapun tujuan dilaksanakannya Praktek Kerja Lapangan ini adalah sebagai berikut:

- Sebagai syarat mahasiswa untuk memenuhi salah satu bagian kurikulum pendidikan di Universitas Medan Area
- Mahasiswa dapat memahami setiap proses dan mengaplikasikan 2. pengetahuan yang diperoleh dalam perkuliahan ke dunia industri.
- Meningkatkan pengetahuan, pengalaman, serta pengembangan sikap dalam proses industri dengan melakukan observasi langsung di lapangan.
- Mempelajari proses pengolahan tandan buah segar kelapa sawit menjadi CPO.

1.3. **Manfaat Magang**

1.3.1. Bagi Mahasiswa

Adapun manfaat kerja praktek bagi mahasiswa antara lain sebagai berikut :

- Dapat mengetahui perusahaan secara lebih dekat.
- 2. Membandingkan teori – teori yang di peroleh di bangku perkuliahan dengan praktek di lapangan.
- 3. Dapat memahami atau mengetahui beberapa aspek perusahaan misalnya: teknik, organisasi, ekonomi, dan persediaan.
- 4. Dapat mengumpulkan data dari lapangan guna menyusun tugas sarjana.
- 5. Memperoleh suatu keterampilan dalam penguasaan pekerjaan.

1.3.2. Bagi Program Studi

Adapun manfaat kerja praktek bagi jurusan antara lain sebagai berikut:

- 1. Untuk memperluas pengenalan Jurusan Teknik Mesin Univeritas Medan Area.
- Menciptakan dan mempererat hubungan kerja sama dengan perusahaanperusahaan lain.

UNIVERSITAS MEDAN AREA

Document Accepted 31/1/25

2

3

1.3.3. Bagi perusahaan

Adapun manfaat kerja praktek bagi perusahaan antara lain sebagai berikut : 1. Dapat memperkenalkan kepada mahasiswa dan masyarakat umum.

- 2. Sumbangan perusahaan dalam memajukan pembangunan di bidang pendidikan.
- 3. Laporan kerja praktek dapat dijadikan sebagai masukan ataupun perbaikan seperlunya dalam pemecahan masalah.

1.4. Tempat dan Waktu Pelaksanaan Magang

Praktek Kerja Lapangan telah dilaksanakan di PT. Perkebunan Nusantara II Pabrik Kelapa Sawit Unit Pagar Merbau III, Kecamatan Pagar Merbau, Kabupaten Deli Serdang, Provinsi Sumatera Utara. Waktu pelaksanaan Praktek Kerja Lapangan ini adalah ± 60 hari kerja efektif antara tanggal 25 April s/d 25 Juni 2022.

1.5. Metodologi Praktek Magang

Adapun metodologi praktek kerja lapangan yang dilakukan adalah:

- 1. Pengenalan organisasi dan manajemen perusahaan, meliputi:
 - a. Sejarah berdirinya perusahaan
 - b. Tujuan berdirinya perusahaan
 - c. Struktur Organisasi perusahaan.

2. Studi literatur

Pengumpulan data dilakukan dengan metode-metode berikut: d.

Pengamatan langsung terhadap objek permasalahan

- e. Pengambilan data dari arsip kegiatan dan kondisi perusahaan yang berhubungan dengan kebutuhan
- f. Informasi lisan dari pihak yang berkaitan.
- 3. Proses Produksi, meliputi:
 - 1. Pengadaan bahan baku
 - 2. Pengolahan bahan baku
 - 3. Penampungan dan penyimpanan hasil produksi
 - 4. Pendistribusian hasil produksi
 - 5. Pemeliharaan dan pengendalian mutu hasil produksi.

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

BAB 2 TINJAUAN UMUM PERUSAHAAN

2.1. Sejarah Perusahaan

PTPN II termasuk salah satu perusahaan Badan Usaha Milik Negara (BUMN). Pada awalnya perusahaan ini dikuasai oleh satu maskapai milik Negara Belanda yang ruang lingkup usahanya terbatas pada *sector* perkebunan,yaitu perusahaan *Veringe Deli My* (VDM). VDM ini terkenal dalam mengusahakan Belanda kepada bangsa Indonesia, perusahaan ini berganti nama menjadi NV Deli maskapai (*MOAT CHAPPY*) yang berkantor pusat di Medan. Perusahaan ini diambil alih oleh pemerintahan Indonesia sesuai dengan peraturan pemerintah dan diganti namanya menjadi perusahaan Perkebunan Negara Tembakau Deli (PPN TD-1).

Pada tahun 1968 nama perusahaan ini diubah menjadi perusahaan perkebunan Negara (PPN-II) berdasarkan instruksi Presiden. PPN-II merupakan gabungan dari PPN TD-I dengan beberapa kebun TD-II dan TD-III. Pada tanggal 1 april 1974 terjadi peralihan dari PPN-II kepada PTP IX sekaligus di adakan ke organisasian berdasarkan dari tingkat direkut,staf dan karyawan.Karena produksi tembakaunya sangat rendah akibat tingginya derajat penyakit layu yang dapat menimbulkan kerugian yang besar, maka untuk Pagar Merbau dan kwala namu dialihkan menjadi tanaman kelapa sawit berdasarkan SK No.393/KPTS/UM/1970 tanggal 6 agustus 1970.

Pabrik PKS Pagar Merbau ini di rencanakan berdiri tahun 1974 oleh direksi PTP IX. Pembangunan pabrik dimulai dengan kapasitas 30 Ton TBS/jam yang semula direncanakan 50 Ton TBS/jam pada tahun 1975. Akhir November 1976 pembangunan pabrik selesai dilakukan sebagai langkah awal, dilakukan *trial run*, pemanasan perlahan-lahan, individual tes dan pembersihan. Awal Januari 1977 pabrik mulai beroperasi secara berangsur-angsur *Sumber:PTPN II Pagar Merbau*.

Lokasi pabrik ini dari kota Lubuk Pakam berjarak sekitar 4 km menuju desa Pagar Merbau III Kecamatan Lubuk Pakam Kabupaten Deli Serdang. Jarak tempuh dari kota Medan untuk mencapai pabrik ini adalah sekitar 19 km.

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

2.2. Visi dan Misi Perusahaan

Adapun Visi dan Misi PTPN II adalah sebagai berikut:

1. Visi PTPN II

Adapun visi dari PTPN II, yaitu menjadi perusahaan perkebunan multi usaha berdaya saing tinggi.

2. Misi PTPN II

- a. Mengoptimalkan Seluruh Potensi Sumber Daya dan Usaha.
- b. Memberikan Kontribusi Optimal.
- c. Menjaga Kelestarian dan Pertambahan Nilai.

Adapun Visi dan Misi PTPN II, dapat dilihat pada gambar 2.1.

Gambar 2. 1. Visi dan Misi PTPN II

2.3 Ruang Lingkup Bidang Usaha

PKS Pagar Merbau bergerak dalam bidang pengolahan Tandan Buah Sawit (TBS) menjadi minyak kelapa sawit. Adanya peningkatan permintaan akan produksi bahan mentah berupa minyak mentah kelapa sawit telah membuka peluang usaha untuk pengembangan industri hilir.

Untuk pemasaran produk, PKS Pagar Merbau memasarkan produknya dengan cara melakukan penjualan secara partai besar. Penjualan secara partai besar ini dilakukan oleh kantor pemasaran bersama yang bekerja sama dengan pusat.

2.4. Daerah Pemasaran

Hasil-hasil produksi seluruh PTPN yang bernaung dalam koordinator wilayah I, pemasarannya dikelola oleh Kantor Pemasaran Bersama (KPB). Daerah

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

Document Accepted 31/1/25

5

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

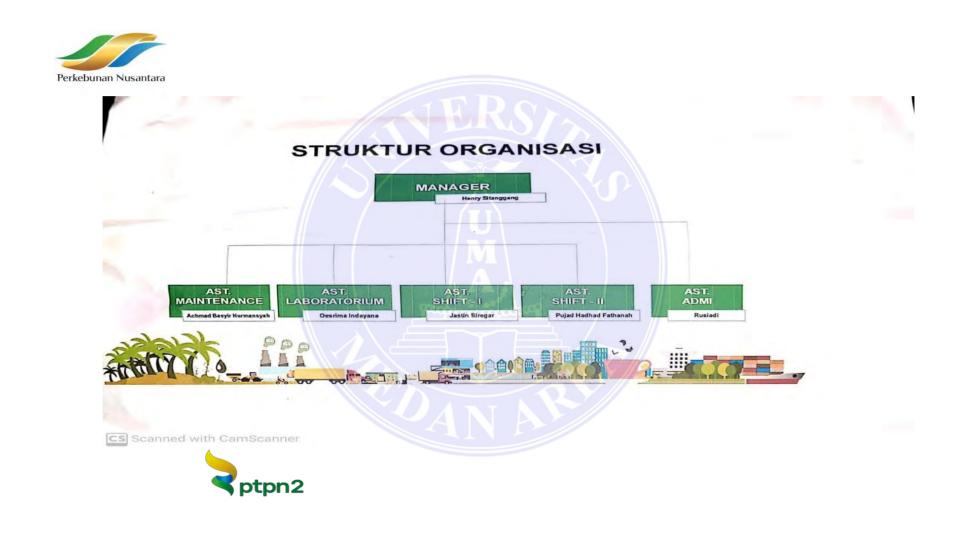
Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

pemasaran hasil produksi perkebunan yang dikelola oleh KPB dapat dibagi dua, yaitu daerah pemasaran dalam negeri dan daerah pemasaran luar negeri.

Khusus untuk pemasaran dalam negeri, kegiatannya dilaksanakan oleh KPB kepada penyalur yang telah ditetapkan yang telah di terapkan berdasarkan surat keputusan.Menteri perdagangan jadi, pemasaran CPO dari PKS pagar merbau dikelola oleh Kantor Pemasaran Bersama (KPB).

PKS pagar merbau berada dibawah naungan PTPN II yang berpusat di Tanjung Morawa. Jadi semua hasil pengolahan dari pabrik ini yang akan dikirim ke KPB harus melalui perintah dari kantor direksi (kandir). Pelanggan yang akan membeli CPO dan inti sawit berurusan dengan Kantor Direksi (Kandir) Tanjung Morawa dan nantinya pihak Kandir yang akan memerintahkan kepada PKS Pagar Merbau untuk mengeluarkan produksinya sebanyak yang dibutuhkan pelanggan.

2.5. Struktur Organisasi Perusahaan


Struktur organisasi adalah bagian yang menggambarkan hubungan kerja sama antara dua orang atau lebih dengan tugsa yang saling berkaitan untuk pencapaian suatu tujuan tertentu.

Dengan adanya struktur organisasi dan uraian tugas yang telah ditetapkan akan menciptakan suasana kerja yang baik karena akan terhindar dari tumpang tindih dalam perintah dan tanggung jawab. Organisasi ditentukan atau dipengaruhi oleh badan usaha, jenis usaha dan besarnya usaha dan sistem produksi perusahaan. Setiap perusahaan yang mempunyai tujuan tertentu akan berusaha semaksimal mungkin membuat suatu hubungan kerja sama yang baik dan harmoni. Demikian juga halnya dengan PKS Pagar Merbau ini. Untuk menciptakan hubungan kerja sama yang baik dan harmonis dalam operasionalnya,maka perusahaan ini memiliki struktur organisasi.

Organisasi ditentukan atau di pengaruhi oleh badan usaha, jenis usaha, besarnya usaha dan sistem produksi perusahaan. Dalam rangkai mencapai efektifitas dan efisiensi kerja yang baik, Adapun Struktur Organisasi bisa dilihat pada gambar 2.2.

© Hak Cipta Di Lindungi Undang-Undang

© Hak Cipta Di Lindungi Undang-Undang

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

^{2.} Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah

^{3.} Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

Gambar 2. 2. Struktur Organisasi PTPN II PKS Pagar Merbau

© Hak Cipta Di Lindungi Undang-Undang

1. Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

2. Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah

3. Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

Adapun tugas, wewenang dan tanggung jawab masing-masing personil pada PKS Pagar M adalah sebagai berikut:

1. Manager (Kepala pabrik)

Manager atau kepala pabrik bertanggung jawab melaksanakan kebijakan direksi dalam pengontrolan seluruh kegiatan operasional di Pabrik Kelapa Sawit (PKS).

2. Asisten (Maintance)

Asisten teknik bertanggung jawab terhadap asisten perawatan mesin pabrik secara preventif maupun berkala sehingga dapat terhindar kerusakan berat yang dapat menyebabkan breakdown pabrik.

3. Asisten Laboratorium

Asisten laboratorium bertugas untuk memimpin kegiatan laboratorium, melakukan analisis yang diperlukan pabrik secara optimal guna me ngendalikan jalannya proses pengolahan TBS, inti sawit, air boiler, dan air limbah agar mutu dan kerugian yang timbul berada dalam batas normal.

4. Asisten Pengolahan

Asisten Proses bertanggung jawab terhadap hasil produksi serta menguasai sistem kontrol losis dan efesiensi mesin produksi sehingga mencapai hasil yang optimal dalam pengoperasian.

5. Kepala Tata Usaha (KTU)

Kepala tata usaha bertanggung jawab dalam mengelola semua kegiatan administrasi dan keuangan dalam lingkungan pabrik untuk mendapatkan data yang benar dan akurat sehingga menghasilkan laporan dan informasi yang tepat waktu, relavan dan konsisten sebagai alat pengendalian, pengamanan aset dan sumber daya serta pengembalian keputusan.

6. Mandor

Bertanggung jawab untuk mengatur pekerjaan karyawan dan membimbing karyawan dalam bekerja dan jika ada kerusakan di pada setiap stasiunpengolahan maka mandor yang menanganinya terlebih dahulu sebelum diambil alih atau diberitahu asisten

9

UNIVERSITAS MEDAN AREA

1. Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

7. Pekerja

Bertanggung jawab dalam segala pekerjaan yang dilakukan untuk mendapatkan hasil yang optimal, dan mengikuti serta menjalani segala peraturan yang telah diterapkan di PT Ika Bina Agro Wisesa. Tenaga kerja harian dibidang sortasi untuk menurunkan TBS dari mobil.

2.6. Sumber Daya Manusia

2.6.1. Tenaga Kerja

Tenaga kerja yang bekerja di PKS Pagar Merbau II dibagi menjadi 2 jenis yaitu:

- 1. Pegawai staff,golongan III-A sampai IV-B
- 2. Pegawai non-staff,golongan I-A sampai II-D

2.6.2. Jam kerja

Pada masa produksi, jam kerja yang dilakukan bagi setiap karyawan atau staff produksi adalah dengan pembagian jam kerja menjadi 2 shift yaitu sebagai berikut:

- 1. Shift I :Pukul 07.00 WIB-19.00 WIB
- 2. Shift II :Pukul 19.00 WIB-07.00 WIB

Sedangkan untuk karyawan dibagian administrasi masa kerja selama 6 hari kerja dalam seminggu kecuali hari minggu dengan jam kerja kantor adalah sebagai berikut:

1. Senin-Kamis

Pukul 07.00 WIB-12.00 WIB :Jam kerja Pukul 12.00 WIB-14.00 WIB :Jam Istirahat

Pukul 14.00 WIB-16.00 WIB :Jam kerja setelah istirahat

2. Jumat

Pukul 07.00 WIB-11.30 WIB

Pukul 11.30 WIB-14.00 WIB

:Jam kerja
:Jam istirahat

Pukul 14.00 WIB-16.00 WIB :Jam kerja setelah istirahat

3. Sabtu

Pukul 07.00 WIB-11.30 WIB :Jam kerja

Kesejahteraan umum bagian pegawai dan karyawan pabrik merupakan hal yang sangat penting. Produktivitas kerja seseorang karyawan sangat di pengaruhi tingkat kesejahteraannya. PKS Pagar Merbau PTPN II memikirkan hal dengan memberikan beberapa fasilitas yaitu:

UNIVERSITAS MEDAN AREA

- 1. Perumahan bagi staff, karyawan dan keluarganya yang berada di lokasi perkebunan sekitar. Apabila tidak mengambil perumahan diberikan bantuan sewa rumah sebesar 25%.
- 2. Sarana pendidikan dan memberikan bantuan dana pendidikan berupa uang pemondokan untuk anak-anak staff maupun karyawan yang kuliah atau bersekolah jauh dari rumah.
- 3. Sarana kesehatan untuk staff dan karyawan beserta keluarganya berupa rumah sakit PTPN II.
- 4. Membuat sarana olahraga yang tersedia di lokasi kompleks perumahan karyawan.

BAB 3 SISTEM KERJA PERUSAHAAN

3.1. Mesin Dan Peralatan

Setiap mesin dan peralatan memiliki perannya masing-masing sehingga lancarnya proses dari bahan dasar sampai akhir (luaran). Berikut mesin dan alat yang digunakan Pabrik Kelapa Sawit Pagar Merbau

1. Timbangan

Fungsi: Sebagai pengukur beban muatan pada kendaran penerima barupa TBS dan pengiriman berupa CPO dan Karnel. Mengguanakn sistem hidrolik dengan dan sistem komputerisasi.

2. Loading Ramp

Fungsi: sebagai tempat pendistribusian TBS ke tiap lori Spesifikasi alat:

- a. Kapasitas loading ramp 10 ton / Pintu
- b. Jumlah pintu loading ramp sebanyak 22 pintu
- c. Kemiringan 45 derajat
- d. Sistem hidrolik digerakkkan oleh dua set hidrolik power unit elektromotor.

3. Capstand

Fungsi: digunakan sebagai alat penggerak lori sehingga memungkinkan lori bisa berjalan. Sistem kerjanya yaitu pengait dikaitkan keujung lori lalu capstand akan bergerak sehingga menghasilkan perpindahan lori.

4. Lori

Fungsi: Sebagai tempat TBS yang telah disortir dan akan direbus Spesifikasi alat: Panjang 250 cm, lebar 150 cm

5. Sterilizer

Fungsi: menonaktifkan enzim lipase yang akan menyebabkan naiknya ALB, memudahkan buah lepas dari tankos, melunakkan daging buah, mengurangi kadar air.

Spesifikasi alat:

- a. Bentuk: silinder horizontal
- b. Panjang 2723 cm
- c. Diameter dalam 208 cm
- d. Diameter luar 281 cm
- e. Tekanan $2.8 3 \text{ kg/cm}^2$
- f. Isi muatan yaitu 10 lori

Fungsi: saluran pembuangan uap bekas, berjumlah 4 unit dengan maks. Air pressure 800 kpa, Fungsi: tempat masuknya uap rebusan, sejumlah 4 unit. Volume 0,8 L dengan maks suplay pressure 0,8 mpa.

6. Hoisting Crane

Fungsi: Untuk mengangkat dan membuang TBS yang berada pada lori ke threshing serta mengembalikan kelori kosong ke posisi semula. Spesifikasi alat: kapasitas 500 kg, tinggi angkat 12 m, kapsitas angkat 5 ton, kecepatan angkat 12,5 m/menit, dan jumlah 2 unit.

7. Automatic feeder

Fungsi: Tempat buah sebelum masuk ke threser

Spesifikasi: Panjang 2 m, kapasitas 30 ton/jam, memakai elektromotor dengan tegangan 380 volt, power.

8. Thresher

Fungsi: melepaskan atau memisahkan buah dari janjangan dengan cara membanting TBS. Dengan kecepatan putaran 23 rpm.Spesifikasi alat: Panjang drum 4000 mm, diameter drum 2000 mm, panjang sumbu 4000 mm, kapasitas 30 ton/jam.

9. Under Threser Conveyor

Fungsi: untuk mengangkut brondolan ke fruit elevator Spesifikasi alat: diameter 500 mm, panjang 5200 mm, kapasitas 60 ton/jam, memakai elektromotor dengan tegangan 380 volt.

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

^{2.} Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah

10.Bottom Cross Conveyor

Fungsi: untuk mengantar dan membagikan buah yang datang dari fruit conveyor kedalam elevator. Spesifikasi alat: Kapasitas 20 ton/jam, ukuran 5165 x 530285 mm, putaran 52 rpm.

11. Fruit elevator

Fungsi: alat untuk mengangkut brondolan masuk kedalam distributing conveyor Spesifikasi alat: Kapasitas 30 ton/jam, tinggi 12090 mm, memakai elektromotor dengan, tegangan 415 volt.

12. Distributing Conveyor

Fungsi: alat untuk mendistribusikan buah brondolan yang diterima dari fruit elevator ke masing-masing digester. Spesifikasi alat: Diameter 500 mm, panjang 8046 mm, lebart 550 mm, kapasitas 30 ton/jam.

13. Digester

Fungsi: untuk melunakkan / mengaduk buah agar mudah dalam proses pengepresan sehingga ampas bebas dari minyak dan merusak struktur buah dan membuka sel-sel yang mengadnung minyak.

Spesifikasi alat:

Panjang 2800 mm, panjang roll 1200 mm, kapasitas 10-15 ton/jam, putaran pisau 25 rpm, volume tabung 3200 L.

14. Screw Press

Fungsi: untuk memeras minyak sawit dari daging buah. Spesifikasi alat: kapasitas 10-15 ton/jam, putaran 11 rpm, jumlah 4 unit, memakai pompa hidrolik dengan kapasitas 170 kg/cm dan tekanan maks 160 kg/cm, tekanan standar 40-60 kg/cm.

15. Empty Bunch Cross Conveyor

Fungsi: alat untuk mengankat tandan kosong dari hasil bantingan. Spesifikasi alat: Panjang 59000 mm, kapasitas 60 ton/jam

16. Sand Trap Tank

Sand trap tank adalah suatu alat berbentuk silinder yang bekerja berdasarkan berat jenis antara air dengan minyak dimana berat jenis air

UNIVERSITAS MEDAN AREA

lebih tinggi dari minyak sehingga dengan mudah minyak yang berada di atas air mengalir ke *vibro* (saringan bergetar).

17. Vibro Separator

Kapasitas Fungsi: untuk menyaring minyak kelapa sawit dari serat-serat dan kotoran- kotoran kasar.Spesifikasi alat: 30 ton/jam, putaran 1500 rpm, tenaga 2,5 HP, ukuran mesh screen 20 dan 40, memiliki motion generator, memiliki lektromotor dengan putaran 1500 rpm dan tegangan 380 volt.

18. Crude Oil Tank

Fungsi: untuk menampung minyak.Spesifikasi alat: Panjang 3 m, lebar 2 m, luas 6 m2, memiliki elektromotor dengan tegangan 380 volt.

19. Vertical Continous Tank

Fungsi: menampung minyak yang dipompakan dari crude oil tank dan memisahkan minyak dengan kotoran memakai sistem gravitasi atau penegndapan. Sepsifikasi alat: kapasitas 30 ton/jam, tinggi 6100 mm, diameter 2000 mm, volume 40 m2.

20. Oil Tank

Fungsi: untuk memisahkan kotoran yang mash terikut bersama minyak yang jkeluar dari VCT serta memperkecil kandungan air yang terdapat pada minyak. Spesifikasi alat: Tinggi 3500 mm, diameter 2000 mm, kapasitas 20 ton/jam.

21. Transfer Tank

Fungsi: Bak transfer merupakan tempat penampungan minyak sebelum di kirim ke tangki timbun atau storage tank.

22. Vacum Dryer

Fungsi: mengeringkan dan mengurangi kadar air minyak sampai kurang dari 0,1 % dengan sistem penguapan hampa udara. Spesifikasi alat: Kapasitas 10 ton, memiliki elektromotor dengan putaran 1440 rpm, tegangan 380-420 volt, arus 9,2 A.

23. Tangki Timbun

Fungsi: untuk menyimpan minyak CPO hasil olahan sebelum didistribusikan serta untuk mengetahui jumlah hasil produksi perhari untuk mengatahui besarnya rendemen minyak yang dihasilkan. Spesifikasi alat: Jumlah 2 buah, kapsitas 1000 ton.

UNIVERSITAS MEDAN AREA

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

24. Sludge Tank

Fungsi: untuk mengendapkan pasir, lumpur dan partikel-partikel kasar. Spesifikasi alat: Tinggi 8 m², diameter 2 m, kapasitas 20 ton/jam.

25. Sludge Separator

Fungsi: untuk memisahkan beberapa kotoran, pasir, lumpur yang terikut bersama minak dari sludge tank dengan gaya sentrifugal.Spesifikasi alat: kapasitas 10 ton/jam, memakai elektromotor dengan tegangan 380 volt dan arus 30 A.

26. Fat Fit

Fungsi: untuk pengutipan dari sludge buangan pabrik.Spesifikasi alat: Panjang 4 m, lebar 3 m, tinggi 1,5 m, kapasitas 18 m³

27. Cake Breaker Conveyor (CBC)

Fungsi: menghantarkan fiber dan biji serta menghancurkan gumpalan fiber dan biji.

Spesifikasi alat: diameter 500 m, panjang 20280 mm, motor 7,5 HP, kapsitas 30 ton/jam, memakai elektromotor dengan putaran 1420 rpm, dan power 7,5 HP.

28. Nut Polishing Drum

Fungsi: untuk memisahkan biji dari serabut yang masih tertinggal/melekat pada biji. Spesifikasi alat: kapasitas 6 ton/jam, lubang pori kecil 8-10 mm, lubang pori besar 40-45 mm, memakai elektromotor, dan putaran NI 930 dan 23 rpm

29. Nut Silo

Fungsi : untuk menampung biji sementaran sebelum dipecahakan di ripple mill.

Spesifikasi alat: volume 90 m³, kapasitas 10 ton/jam, jumlah 4 unit.

30. Nut Grading Drum

Fungsi: untuk memisahkan biji dengan cangkang

Spesifikasi alat : diameter 1000 mm, panjang 200 rpm ,kapasitas 6 ton per jam,memakai elektromotor dengan putaran 1430 rpm

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

⁻⁻⁻⁻⁻

31. Ripple Mill

Fungsi: untuk memecahkan cangkang dari biji sehingga mempermudah proses pemisahan biji dan cangkang.

Spesifikasi alat: diameter 400 m, putaran 1440 rpm, kapsitas 6 ton/jam, jumlah 3 unit.

Kernel Distributing Conveyor

Fungsi : Mengangkut dan membagi inti yang keluar dari Blower transfer LTDS II.

Spesfikasi Alat: Diameter 315 mm, Panjang 3900 mm, Kapasitas 3 ton/jam, Memakai elektromotor dan putaran 1420 rpm.

Memakai elektromotor dan putaran 1420 rpm.

33. Silo inti

penampungan inti dan sekaligus tempat Fungsi : Sebagai tempat pengeringan inti.

Spesifikasi: Lebar: 2000 mm, Tinggi: 8700 mm, Kapasitas 6ton, Temperatur 64 °C.

Blower Fun 34.

Fungsi: untuk mengeringkan inti atau kernel. Spesifikasi alat: Putaran 1445 rpm, Volume 1950 m³

Kernel Bulking 35.

Fungsi: Sebagai tempat penampungan dan penyimpanan inti sebelum di pasarkan.

Spesifikasi alat:Diameter 9 m, Tinggi 11 m, Kapasitas 500 Ton / jam, memakai elektromotor dengan putaran 1420 rpm.

36. Boiler

Fungsi: Sebagai tempat penghasil uap (Steam) untuk menggerakkan turbin uap dan memenuhi kebutuhan steam dari alat-alat yang digunakan untuk memproduksi CPO seperti Sterilizer.

37. Turbin Uap

Fungsi: Untuk mengubah tekanan uap menjadi listrik.

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

^{2.} Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah 3. Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

Spesifikasi alat: Power 1296 hp, putaran 5000 rpm trip speed 5500 rpm, inlet temp (Stand) 210 °C, inlet temp(Max) 213 °C, Inlet Press (Stand) 18,5 kg/cm²,inlet press (Max) 19,5 kg/cm².

BPV 38.

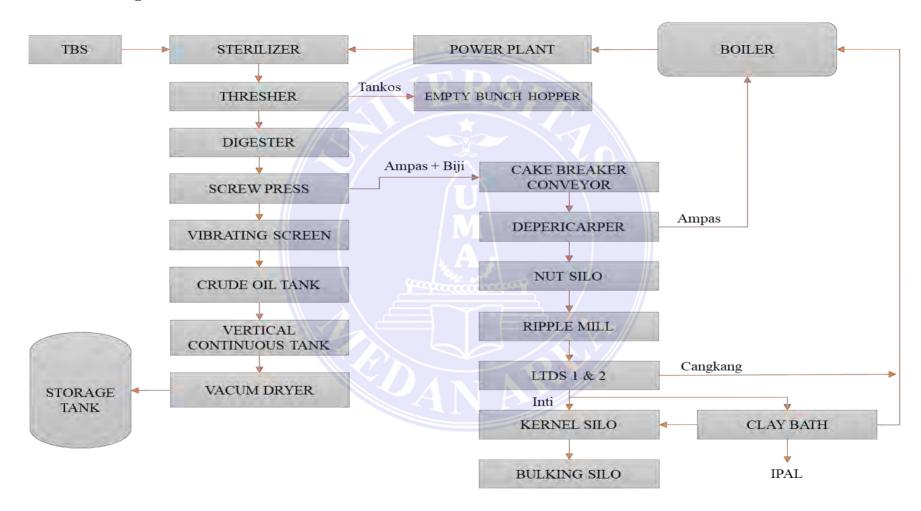
Fungsi: untuk tempat penampungan uap bekas dari turbine dan disalurkan ke stasiun pabrik. Spesifikasi alat: Tekanan 3 kg/cm² jumlah 1 unit

39. Mesin Diesel

Fungsi: Memenuhi kebutuhhan listrik bila Turbine sedang tidak beroprasi

40. Anion dan Kation Exchanger

Fungsi: Untuk mengikat unsur-unsur mineral dan logam serta mengikat sisa asam pada air umpan ketel. merek Hydrex Asia LTD:Kapasitas 20 Ton/jam jumlah 2 unit.


Merek per muted: kapasitas 10 ton/jam jumlah 4 unit.

2.3. Bahan Baku Pabrik Kelapa Sawit

Dalam menentukan buah yang akan diolah ada beberapa kriteria yang harus diperhatikan. Kriteria ini berhubungan dengan penggolongan mutu sawit yang nantinya akan mempengaruhi dari mutu minyak sawit yang dihasilkan yang dinyatakan sebagai. Fraksi buah adalah derajat kematangan TBS yang diterima di pabrik, berikut adalah pengklasifikasiannya:

- Fraksi 00: Sangat mentah, hitam dan tidak membrondol sama sekali.
- Fraksi 0 : Mentah, merah dan tidak membrondol
- Fraksi 1: Kurang matang, 12%-25% buah membrondol dari lapisan luar TBS.
- Fraksi 2: Matang, 25-50% buah membrondol dari lapisan luar TBS.
- 5. Fraksi 3: Matang, 50-75% buah membrondol dari lapisan luar TBS.
- Fraksi 4: Lewat matang, 100% buah membrondol dari lapisan luar TBS.
- 7. Fraksi 5 : Lewat matang, 100% buah lapisan dalam telah membrondol.

3.3. Block Diagram

Gambar 3. 1. Block Diagram

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

^{2.} Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah

^{3.} Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

© Hak Cipta Di Lindungi Undang-Undang

1. Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber 2. Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah

3. Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

22

3.4. Langkah Kerja

Pabrik Kelapa Sawit Pagar Merbau mengelolah TBS menjadi CPO dan Kernel dengan beberapa tahap langkah kerja. Dengan masing – masing stasiun memliki beberapa alat atau mesin dengan fungsi kerja yang berbeda beda namun saling bekelanjutan sampai menghasilkan barang jadi atau produk luaran. Pada proses kerja terdapat pembagian delapan stasiun, diantaranya yaitu:

- 1. Stasiun Penerimaan Bahan Baku
- 2. Stasiun Perebusan
- 3. Stasiun Bantingan
- 4. Stasiun Pengempaan
- 5. Stasiun Pemurnian Minyak (Klarifikasi)
- 6. Stasiun Kernel
- 7. Stasiun Pengolahan Air (Water Treatment)
- 8. Stasiun Boiler/Ketel Uap
- 9. Stasiun Power Plant

3.5. Stasiun Penerimaan TBS

3.5.1. Jembatan Timbang

Jembatan timbang merupakan alat yang sangat vital dalam sebuah Pabrik Kelapa Sawit yang menjadi bagian terdepan dimana didapat data kuantitas masuknya *Raw Material* dan keluarnya produk yang dihasilkan. Timbangan berfungsi untuk mengetahui berat bahan baku yang masuk ke pabrik yaitu dengan menghitung Bruto, Tarra, dan Netto dari TBS.

Brutto: Berat TBS dengan truk

Tarra: Berat truk kosong

Netto: Selisih dari Brutto dan Tarra untuk berat bahan baku (beratbersih)

Setiap truk yang mengangkut TBS ke pabrik ditimbang terlebih dahulu di jembatan timbang untuk memperoleh berat sewaktu berisi (bruto) dan sesudah dibongkar (tarra). Selisih antara bruto dengan tarra adalah jumlah TBS yang diterima di PKS (netto). Selain TBS, pada jembatan timbang PKS Pagar Merbau dilakukan juga penimbangan terhadap pengiriman *CPO* dan inti sawit, janjang kosong.

Dalam pengoperasiannya ada beberapa prosedur yang harus diperhatikan:

- 1. Dipastikan posisi kendaraan yang ditimbang berada ditengah tengah timbangan.
- 2. Dipastikan pula mesin truk dimatikan pada saat penimbangan karena getaran mesin dapat mempengaruhi hasil penimbangan dan sopir diharuskan untuk turun.

Terdapat 2 buah jembatan timbang di PKS Pagar Merbau III, tapi yang masih di gunakan yaitu jembatan timbang nomor 2.

3.5.2. Sortasi TBS

Sebelum dimuat kedaalam loading ramp,terlebih dahulu dilakukan sortasi terhadap TBS agar tercapai rendemen yang sesuai dengan yang di inginkan oleh perusahaan. Sortasi TBS dilakukan di lantai/veron loading ramp. Mutu CPO dan rendemen hasil olah sangat dipengaruhi oleh mutu TBS dan mutu panen. Sortasi TBS sebagai media untuk menilai mutu panen.

Sortasi merupakan penyeleksian mutu atau kematangan dari buah yang akan diolah sehingga menghasilkan *CPO* yang optimal dan berkualitas baik. Sortasi dilakukan untuk mengontrol, mengawasi dan memeriksa TBS yang akan diolah guna mengetahui mutu atau kematangan TBS yang masuk.

Adapun sortasi TBS, dapat dilihat pada gambar 3.2.

Gambar 3. 2. Sortasi TBS

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

3.5.3. Loading Ramp

Selesai disortasi, TBS dibawa ke *loading ramp* dan dituang ke lantai peron yang memiliki kemiringan 30-45⁰ dan mengisi tiap – tiap pintu-pintu dari *loading ramp* dengan bantuan *wheel loader*. TBS yang akan diproses diisikan ke dalam lori – lori yang berkapasitas 2,5 ton TBS dengan cara membuka pintu yang diatur dengan sistem pintu *hydraulic pump* melalui pintu *loading ramp*, yang masing- masing digerakkan dengan dorongan *fluida* minyak yang berasal dari pompa *electromotor* serta *gear box*, yang menggerakkan pompa oli atau minyak untuk menghasilkan udara sebagai pendorong tuas hidrolik.. Lantai *loading ramp* dibuat miring dan berkisi – kisi sehingga saat pembongkaran TBS dari truk maupun pemasukan TBS ke lori, sebagian besar kotoran turun / keluar melalui kisi – kisi tersebut juga bertujuan untuk memisahkan kotoran – kotoran seperti pasir, kerikil dan sampah – sampah lain yang terikut.

PKS Pagar Merbau memiliki 1 *loading ramp*, yang memiliki 22 pintu *Hydrolic Loading Ramp*.

Fungsi loading ramp antara lain adalah:

- 1. Tempat menampung TBS dari kebun sebelum diproses.
- 2. Mempermudah pemasukan TBS ke Lori.
- 3. Mengurangi kadar kotoran.
- 4. Untuk menjamin kontinuitas pengolahan pada loading ramp.

Adapun loading ramp, dapat dilihat pada gambar 3.3.

Gambar 3. 3. Loading Ramp

UNIVERSITAS MEDAN AREA

3.5.4. Stasiun Perebusan

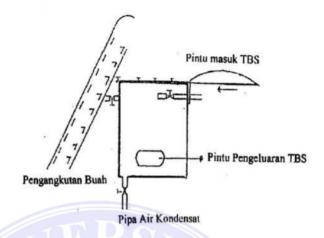
Ketel rebusan adalah bejana uap yang digunakan untuk merebus buah sawit. Untuk menjaga tekanan dalam rebusan tidak melebihi tekanan kerja yang diizinkan, rebusan diberi katup pengaman (safety valve). Proses perebusan memerlukan tekanan 2,8-3,0 Kg/cm² dan temperatur ± 140°C dengan lama perebusan antara 85-90 menit serta siklus perebusan 105 menit. Sterilizer yang digunakan yaitu bejana tekan horizontal dengan kapasitas penampung lori 10 per unit. Sterilizer yang ada dan digunakan pada PKS Pabatu ini berjumlah 3 buah. Setiap ketel rebusan memiliki 2 pintu rebusan, ketel rebusan 1 memiliki merk SAS buatan Indonesia. Setiap ketel rebusan memiliki kapasitas 25 ton. Strerilizer menggunakan 1 unit compressormerk.

SWAN buatan Taiwan dengan kapasitas 10 kg/cm yang memiliki elektromotor 1 unit merk TATUNG buatan Korea dengan 10,05 Kw/Hp, 15,3 A, 380 V, 1445 rpm dan tipe FDFC. Proses perebusan memiliki fungsi mempermudah brondolan lepas dari tandan pada waktu proses penebahan di *threser* dan menghentikan proses peningkatan asam lemak bebas (ALB). Ketel perebusan juga dilapisi oleh mantel yang terbuat dari alumunium dan baja paduan.

Sistem perebusan di PTPN II PKS Pagar Merbau adalah sistem tiga puncak (triple peak). Triple peak adalah jumlah puncak yang terbentuk selama proses perebusan tiga puncak akibat dari tindakan pemasukan uap yang silih berganti. Jumlah puncak dalam pola perebusan ditunjukkan dari jumlah pembukaan atau penutupan dari uap masuk atau keluar selama perebusan berlangsung yang diatur secara manual dan otomatis.

3.5.4.1. Klarifikasi Sterilizer

Pada umumnya *sterilizer* digunakan sebagai tempat perebusan kelapa sawit yang berbentuk tabung horizontal. Menurut penggunaannya *sterilizer* dibedakan atas dua jenis, yaitu:

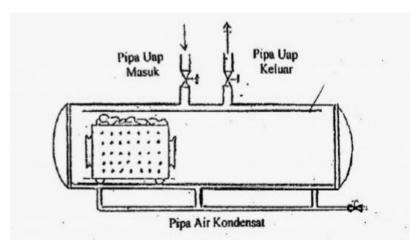

1. Sterilizer Vertical

Sterilizer vertikal berbentuk silinder dengan muatan 2-6 ton TBS. Buah di isi melalui pintu atas dan di keluarkan melalui pintu pengeluaran sebelah sisi depan bawah. Pada bagian *sterilizer* dialasi dengan plat berlubang

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

yang di pasang menurun kearah pintu dengan sehingga memudahkan untuk mengeluarkan isinya. Adapun sterilizer vertikal, dapat dilihat pada gambar 3.4.


Gambar 3. 4. Sterilizer vertical

Tipe tegak mempunyai kelemahan yakni:

- a. Kapasitas rebusan sangat kecil, karena alat besar membutuhkan ruangan yangcukup tinggi. Kapasitas rebusan rata-rata 5 ton TBS.
- b. Bejana memuat buah yang diisi dengan menggunakan bunch elevator, sehingga buah mengalami tingkat kelukaan yang tinggi selama prosestransportasi, sebagai salah satu penyebab kenaikan asam lemak bebas yangtinggi
- c. Teknik pengoperasian yang lebih sulit dan membutuhkan tenaga yang lebihbanyak terutama pada saat menutup dan membuka, serta mengeluarkan buahdari dalam yang dilakukan secara manual.

2. Sterlizer Horizontal

Sedangkan sterilizer horizontal berbentuk silinder yang dipasang mendatar, ditumpu sesuai panjangnya. Sterilizer horizontal ada yang berpintu satu dan ada yang berpintu dua. *Sterilize*r ini di isi dengan tandan buah yang di masukan kedalam lori. Lori ini ada yang berkapasitas 1,5 ton dan 2,5 ton TBS. Sterilizer horizontal dapat di muati 8 – 10 lori untuk satu kali perebusan dengan muatan perlori 2,5 ton TBS. Adapun sterilizer horizontal, dapat dilihat pada gambar 3.5.

Gambar 3. 5. Sterilizer Horizontal

Tipe horizontal memiliki keuntungan antara lain:

- Kapasitas sterilizer antara 15 30 ton TBS.Pengoperasian lebih mudah dan praktis
- b. Buah tidak bersinggungan langsung dengan dinding, bahan olah tidakmungkin menyebabkan bejana menjadi korosi.
- Pengisian uap masuk dan pembuangan uap keluar serta pembuangan air kondensat lebih mudah dilakukan.

3.5.4.2. Komponen Rebusan

Bagian – bagian utama sterilizer ini yaitu :

1. Katub Pengaman (Safety valve)

Berfungsi sebagai katup pengaman saat tekanan dalam *sterilizer* berlebih (diatas tekanan kerja). Adapun katup pengaman, dapat dilihat pada gambar 3.6.

Gambar 3. 6. Katub pengaman (Safetyvalve)

2. Pipa uap dari BPV (*Back Pressure Vessel*) ke Perebusan Pipa uap dari BPV (*Back PressureVessel*) ke Perebusan (*Pipa Steam*) berfungsi sebagai penghantar dan pembagi steam disetiap katub masuk *sterilizer*. Adapun pipa uap dari BVP, dapat dilihat pada gambar 3.7.

Gambar 3. 7. Pipa uap dari BPV (Back PressureVessel)kePerebusan

3. Katub masuk (*Inlet Valve*)

Katub masuk (*Inlet valve*) berfungsi memasukkan stean ke *sterilizer*. Adapun katup masuk, dapat diihat pada gambar 3.8.

Gambar 3. 8. Katub masuk (Inlet valve)

4. Katub keluar(*ExhauseValve*)

Katub keluar(*ExhauseValve*) Berfungsi Sebagai pembuang steam perebusan. Adapun katup keluar, dapat dilihat pada gambar 3.9.

Gambar 3. 9. Katub keluar(ExhauseValve)

5. Katub Buang UapBasah (*CondensateValve*)

Katub untuk membuanguap basah (*Condensate Valve*) berfungsi sebagai pembuang steam hasil kondensasi yang selanjutnya akan ditampung pada *blowdown camber*. Adapun katup untuk membuang uap, dapat dilihat pada gambar 3.10.

Gambar 3. 10. Katub untuk membuang uap basah(Condensate Valve)

6. IndikatorPengukurTekanan(*Barometer*)

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

Indikator pengukuran tekanan (*Barometer*) berfungsi sebagai panduan melihat tekanan saat perebusan berlangsung. Adapun indikator pengukur tekanan, dilihat pada gambar 3.11.

Gambar 3. 11. Indikator pengukuran tekanan (Barometer)

7. Tabung/Bejana Perebusan(Sterilizer)

Perebusan (*Sterilizer*) berfungsi sebagai tempat perebusan yang di lengkapi dengan 2 unit pintu. Adapun perebusan, dapat dilihat pada gambar 3.12.

Gambar 3. 12. Perebusan (Sterilizer)

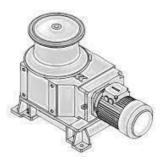
8. Jembatan Lori (*CantileverRailBridge*)

JembatanLori (*Cantilever railbridge*) Berfungsi sebagai jembatan untuk masuk Dan Keluarnyalori buah TBS. Adapun jembatan lori dapat dilihat pada gambar 3.13.

Gambar 3. 13. Jembatan Lori (Cantilever railbridge)

3.5.4.3. Lori

Lori adalah alat yang digunakan sebagai tempat tandan buah segar dari TBS untuk direbus ke dalam *sterilizer*. Lori didesain berlubang - lubang $\pm 0,5$ inch yang berfungsi untuk mempertinggi ventilasi uap pada buah dan penetesan air kondensat, selain itujuga mempermudah air untuk keluar masuk.


Adapun lori, dapat dilihat pada gambar 3.14.

Gambar 3. 14. Lori

1. Alat penarik (Capstand)

Capstand adalah alat penarik lori keluar dan masuk sterilizer. Bolard harus dalam keadaan bersih dan kering untuk menghindari terjadinya tali slip waktu digunakan. Bolard capstand dijalankan untuk menarik lori dengan melilitkan tali secara teratur dan tidak bertindih. Adapun capstand, dapat dilihat pada gambar 3.15.

Gambar 3. 15. Alat penarik (capstand)

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

3.5.5. Stasiun Bantingan (Thresher)

3.5.5.1. Hoisting Crane

Hoisting crane adalah alat yang berfungsi untuk mengangkat & menuangkan lori yang berisi buah ke hopper dan memindahkan lori kosong ke posisi di atas rel yang menuju loading ramp. PKS Pagar Merbau memiliki 2 unit hoisting crane, tetapi yang di gunakan hanya 1 unit sedangkan 1 unit lainnya di gunakan sebagai cadangan.

Hal yang sangat penting dan perlu mendapat perhatian dalam pengoperasian hoisting crane adalah interval penuangan harus kontinu sesuai dengan kapasitas pabrik sehingga proses selanjutnnya berjalan tanpa gangguan .Prinsip kerja alat in

mengangkat & memutar lori ke atas dan ke bawah ke kanan dan ke kiri sehingga buah tumpah kedalam *hopper*. Adapun hoisting crane, dapat dilihat pada gambar 3.16.

Gambar 3. 16. Hoisting Crane

3.5.5.2. Hopper

Hopper adalah bagian dari threser yang berfungsi sebagai tempat penampungan/penumpukan Tandan Buah Rebus (TBR) sebelum dimasukkan ke dalam thresser melalui automatic feeder. Penumpukan atau ketebalan buah yang terlalu besar, hopper akan mengakibatkan lossis karena internal press antara buah yang di atas menindih buah yang di bawah yang mengakibatkan minyak tercecer di lantai hopper dan lossis pada tandan kosong meningkat dan kesulitan pengontrolan pengumpanan buah ke threser serta dapat membuat

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

⁻⁻⁻⁻⁻

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber 2. Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah

^{3.} Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

fruit bunch conveyor menjadi *trip*. Adapun hopper, dapat dilihat pada gambar 3.17.

Gambar 3. 17. Hopper

3.5.5.3. Automatic Feeder

Automatic feeder adalah alat untuk mengatur pemasukan buah yang akan ditebah di threser. Kecepatan automatic feeder \pm 3 rpm yang mengatur buah masak masuk ke dalam thereser secara otomatis. Adapun Automatic Feeder, dapat dilihat pada gambar 3.18.

Gambar 3. 18. Automatic Feeder

3.5.5.4. Threser

Threser berfungsi untuk memisahkan brondolan dari janjangannya dengan cara memutar dan membanting serta mendorong janjang kosong ke empty bunch conveyor dan brondolan akan jatuh melalui kisi – kisi ke conveyor under threser.

Cara kerja *threser* adalah dengan membanting tandan masak pada tromol yang berputar (dibantu siku penahanan) akibat gaya sentrifugal UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

putaran yang terlalu tinggi, tandan akan mengikuti putaran tromol dan tidak jatuh ke as sehingga pemisahan brondolan tidak maksimal. Sebaliknya bila rendah tandan sudah jatuh sebelum ketinggian maksimal atau tandan hanya menggelinding sehingga pemisahan brondolan juga tidak maksimal. Adapun Threeser, dilihat pada gambar 3.19.

Gambar 3, 19, Threser

3.5.5.5. Empty Bunch Conveyor

Janjangan kosong akan terdorong keluar dari *Threser* dan masuk ke *empty bunch conveyor* yang kemudian akan di kumpulkan dan di angkut truk menuju kebun yang selanjutnya janjangan kosong kang di gunakan sebagai pupuk tanamanan kelapa sawit. Adapun Empty Bunch Conveyor, dapat dilihat pada gambar 3.20.

Gambar 3. 20. Empty Bunch Conveyor

3.5.5.6. Under Threser Conveyor, Bottom Cross Conveyor, Fruit Elevator, dan Fruit Distributing Conveyor

Brondolan yang telah lepas dari janjangannya keluar dari *Threser* melalui kisi kisi, kemudian masuk ke *under threser conveyor*. Dari *under thresser conveyor* masuk ke *botom cross conveyor*, dan diangkut oleh *fruit elevator* dan selanjutnya akan masuk ke *distributing fruit conveyor* untuk dibagikan ke *digester*. Apabila di *digester* sudah penuh, maka berondolan akan

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

 $^{2.\} Pengutipan\ hanya\ untuk\ keperluan\ pendidikan,\ penelitian\ dan\ penulisan\ karya\ ilmiah$

di salurkan ke *recyling* conveyor dan langsung di jatuhkan ke *bottom cross conveyor* agar semuannya berjalan secara berkelanjutan.

3.5.6. Stasiun Pengempaan.

3.5.6.1. Digester

Digester adalah alat untuk melumatkan brondolan, sehingga daging buah terpisah dari biji. Drum digester ini terdiri dari tabung silinder yang berdiri tegak yang didalanmya di pasang pisau-pisau pengaduk (Stirring arms) sebanyak 5 tingkat yang terdiri dari 4 tingkat pisau pengaduk dan 1 tingkat pisau lempar yang berada di bagian bawah. Pisau – pisau diikatkan pada poros dan digerakan oleh motor listrik. Lima tingkat pisau (String arms) bagian atas digunakan untuk mengaduk/melumat,dan pisau bagian bawah (expeller blade) disamping pengaduk juga dipakai untuk mendorong massa keluar dari digerter. Di PKS Pagar Merbau ada 4 buah digester. Untuk memudahkan proses pelumatan di perlukan panas 90- 95° C dengan cara menginjeksikan uap langsung ataupun pemanasan ketel (jacket). Jarak pisau dengan dinding digester maksimal 15 mm. Pada empat sisi dinding digester bagian dalam (terletak di antara pisau – pisau digester) di pasang siku penahan agar proses pengadukan lebih sempurna.

Fungsi dari digester adalah:

- 1. Melumatkan daging buah
- 2. Memisahkan daging buah dengan biji
- 3. Mempermudah proses di press

Faktor – faktor yang mempengaruhi kerja digester antara lain adalah :

- 1. Kondisi pisau pengaduk digester, jika aus segera diganti.
- 2. Level volume buah dalam *digester*, minimal berisi ¾ dari *volume digester* (pisau bagian atas tertutup oleh brondolan).
- 3. *Temperature*, dijaga pada suhu 90 95 °C untuk mempermudah proses pemisahan minyak dengan air. *Temperature* dalam *digester* dijaga dengan menginjeksikan steam ataupun dengan menggunakan *steam jacket*.
- 4. Kebersihan bottom plate.

Adapun Digester, dapat dilihat pada gambar 3.21.

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

^{1.} Dilawang Mangutin sahagian atau salumb dalauman in

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber 2. Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah

^{3.} Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

Gambar 3. 21. Digester

3.5.6.2. Screw Press

Screw press atau mesin press adalah alat untuk memisahkan minyak kasar (crude oil) dari daging buah (mesocarp). Buah yang keluar dari digester di peras didalam mesin press dengan tekanan 40-60 bar dan dengan menggunakan air pengencer yang bersuhu 90-95 °C untuk menurunkan viscositas minyak, penambahan dapat pula dilakukan pada oil gutter kemudian di alirkan melalui oil gutter ke stasiun klarifikasi. Sedangkan ampas kempa dipecahkan dengan menggunakan cake breaker conveyor untuk memudahkan memisahkan nut dan ampas. Adapun Screw Press, dapat dilihat pada gambar 3.22.

Gambar 3. 22. Screw Press

3.5.6.3. Cake Breaker Conveyor (CBC)

Cake (Ampas dan Biji) yang dihasilkan dari *screw press* masuk ke *cake breaker conveyor* untuk dialirkan ke stasiun biji sekaligus untuk memcahkan gumpalan cake. Adapun CBC, dapat dilihat pada gambar 3.23.

Gambar 3. 23. Cake Breaker Conveyor (CBC)

3.5.7. Stasiun Pemurnian Minyak (Klarifikasi)

Stasiun pemurnian minyak berfungsi untuk memisahkan minyak dari kotoran dan unsur-unsur yang dapat mengurangi kualitas minyak dan mengupayakan kehilangan minyak seminimal mungkin. Proses pemisahan minyak, air, dan kotoran dalakukan dengan system pengendapan.

3.5.7.1. Sand Trap Tank

Sand trap tank adalah suatu alat berbentuk silinder yang bekerja berdasarkan berat jenis antara air dengan minyak dimana berat jenis air lebih tinggi dari minyak sehingga dengan mudah minyak yang berada di atas air mengalir ke vibro (saringan bergetar). Untuk pengiriman minyak kasar dari sand trap tank dibantu dengan air panas dari hot water tank. Pada sand trap tank suhu minyak kasar mencapai 90-95°C. Adapun Sand Trap Tank, dapat dilihat pada gambar 3.24.

UNIVERSITAS MEDAN AREA

Gambar 3. 24. Sand Trap Tank

3.5.7.2. Vibro Separator (Saringan Bergetar)

Vibro Separator (Saringan Bergetar) terbuat dari bahan stainless steel yang berbentuk silinder dengan kedudukan vertikal dan dilengkapi dengan 2 jenis kawat ayakan. Di PKS Pagar Merbau menggunakan mess berukuran 20 dan 40. Pada vibro separator minyak dari sand trap tank di saring dan dipisahkan kotorannya. Minyak hasil penyaringan dimasukan ke crude oil tank. Sedangkan ampas hasil penyarigan akan di kirim kembali ke digester. Adapun Vibro separator, dapat dilihat pada gambar 3.25.

Gambar 3. 25. Vibro Separator

3.5.7.3. Crude Oil Tank (COT)

Crude Oil Tank (COT) berfungsi menampung minyak mentah yang telah disaring untuk dipompakan ketangki pemisah. Cairan yang mempunyai berat jenis yang lebih ringan akan naik ke permukaan yang selanjutnya akan mengalir ke vertical continuous tank. Sedangkan kotoran minyak di alirkan ke parit untuk dikutip kembali vat vut. Untuk menjaga agar suhu minyak tetap di berikan penambahan panas dengan cara menginjeksikan uap dengan suhu 90-95°C. Adapun Crude Oil Tank, dapat dilihat pada gambar 3.26.

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

Gambar 3. 26. Crude Oil Tank

3.5.7.4. Balance Tank

Balance tank ini berfungsi untuk menyeimbangkan aliran minyak dari Crude Oil Tank ke Vertical Continous Tank (VCT). Balance tank juga berfungsi untuk menampung dan mengendapkan kotoran yang terdapat pada minyak dengan suhu pemanasan 80°C.

3.5.7.5. Vertical Continous Tank (VCT)

Fungsi dari VCT adalah untuk memisahkan minyak, air, dan sludge secara gravitasi, dimana minyak dengan berat jenis yang lebih kecil yaitu 0,8 gr/cm³ akan berada pada lapisan paling atas, sedangkan air yang berat jenis nya 1 gr/cm³ akan berada pada lapisan tengah dan lumpur dengan massa jenis 1,3 gr/cm³ akan berada dibagian bawah dari VCT. Minyak hasil dari pemisahan gravitasi pada VCT di alirkan kedalam *oil tank*, sedangkan sludge di alirkan kedalam *sludge tank*.

Fungsi stirrer dalam VCT adalah untuk membantu mempercepat pemisahan minyak dengan cara mengaduk dan memecahkan padatan serta mendorong lapisan minyak dengan *sludge*. *Temperature* yang cukup (9095°C) akan memudahkan proses pemisahan ini. Adapun Vertical Continous Tank, dapat dilihat pada gambar 3.27.

Gambar 3. 27. Vertical Continous Tank

3.5.7.6. Oil Tank

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

^{2.} Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah

Fungsi *Oil Tank* adalah untuk tempat sementara minyak sebelum diolah oleh *vaccum dryer*. Kebersihan tangki perlu dijaga karna akan mempengaruhi mutu kadar kotoran dalam minyak, maka yang harus dilakukan adalah *blow down* secara rutin. Pemanasan dilakukan dengan menggunakan *steam coil* untuk mendapatkan *temperature* yang diinginkan yakni 90-95°C. *Steam coil* yang bocor dapat mengakibatkan tingginya kadar air pada minyak.

Tujuan pemanasan minyak adalah untuk mempermudah pemisahan minyak dengan air dan kotoran ringan, dengan cara pengendapan yaitu zat yang memiliki berat jenis yang lebih berat dari minyak akan mengendap di dasar tangki. Suhu minyak dalam *oil tank* sangat berpengaruh agar menjaga minyak tetap terpisah dari air dan lumpur. Campuran minyak yang terdapat dalam *oil tank* terdiri dari tiga lapisan yaitu, lapisan minyak, lapisan air, dan lapisan kotoran. Kapasitas dari *oil tank* tersebut dapat menampung hingga 5 Ton. Adapun Oil tank, dapat dilihat pada gambar 3.28.

Gambar 3, 28, Oil Tank

3.5.7.7. Bak Transfer

Bak transfer merupakan tempat penampungan minyak sebelum di kirim ke tangki timbun atau *storage tank*.

Gambar 3. 29. Vacum Dryer

3.5.7.8. Vacum Dryer

Vacum Dryer digunakan untuk memisahkan air dari minyak dengan cara penguapan hampa. Tangki ini terdiri dari tabung hampa udara dan tiga tingkat steam injector. Minyak terhisap dalam tabung melalui nozzle, akibatnya adanya hampa udara dan terpancar kedalam tabung hampa. Tekanan dalam pengeringan vacuum dryer -0,8 atm dan suhu 90-95 °C. setelah dilakukan pemurnian minyak, selanjutnya minyak dipompakan kedalam bak transfer. Norma kadar air pada CPO hasil output vacuum dryer yaitu sebesar 0,20 %. Adapun Vacum Dryer, dapat dilihat pada gambar 3.29.

3.5.7.9. Storage Tank

Storage Tank (tangki timbun) berfungsi untuk tempat penampungan minyak sementara hasil produksi minyak yang akan dipasarkan. Pada tangki ini akan dilakukan pengukuran *volume* tangki dengan cara mengukur tinggi hamparan minyak dengan memakai meteran. Tangki timbun di PKS Pagar Merbau yaitu berjumlah 2 buah di mana setiap tangki timbun dapat menampung 500 Ton CPO. Adapun SOP di tangki timbun yaitu kadar ALB sebesar max 4,5%, kadar air 0,35% dan kadar kotoran sebesar 0,15% sedangkan suhu 50-55°C. Adapun Storage Tank, dapat dilihat pada gambar 3.30.

Gambar 3. 30. Storage Tank

3.5.8. Pengolahan Sludge

3.5.8.1. Sludge Tank

Sludge Tank berfungsi sebagai tempat penampungan sementara sludge sebelum diolah lagi untuk mendapatkan minyak. Kebersihan dalam tangki perlu dijaga karena akan mempengaruhi persentase NOS dalam Sludge, sehingga harus dilakukan blowdown secara rutin. Pemanasan dilakukan dengan menggunakan steam injeksi untuk mendapatkan temperatur 90 – 95 °C. PKS Pagar Merbau memiliki 2 tangki sludge tank dengan kapasitas masing-masing 5 Ton. Adapun Sludge Tank, dapat dilihat pada gambar 3.31.

Gambar 3. 31. Sludge Tank

3.5.8.2. Sludge Separator

Sludge Separator adalah alat yang digunakan untuk mengutip minyak pada Pree Cleaner dengan gaya sentrifugal, minyak yang berat jenisnya lebih kecil akan bergerak menuju ke poros dan terdorong keluar melalui sudu - sudu (disc) ke ruang pertama tangki pemisah (continuous Tank) cairan dan ampas yang mempunyai berat jenis lebih berat dari pada minyak, terdorong kebagian dinding bowl dan melalui nozzle viskositas cairan sludge, komposisi dan

UNIVERSITAS MEDANtanparatur sludge akan mempengaruhi efesiensi dari pada pengutipan minyak

© Hak Cipta Di Lindungi Undang-Undang

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

 $^{2.\} Pengutipan\ hanya\ untuk\ keperluan\ pendidikan,\ penelitian\ dan\ penulisan\ karya\ ilmiah$

dan peralatan. Alat ini berkapasitas 7 m³/jam. Adapun Sludge Separator, dapat dilihat pada gambar 3.32.

Gambar 3. 32. Sludge Seperator

3.5.8.3. Bak Foot Tank

Stasiun tempat penampungan minyak hasil pengutipan dari sludge separator yang akan di bawa ke VCT

3.5.9. Stasiun Kernel

Stasiun kernel merupakan stasiun dimana inti sawit atau kernel diperoleh. Inti sawit dapat menghasilkan minyak yang dinamakan palm kernel oil, namun kernel di PKS Pagar Merbau tidak diproses lebih lanjut. Kernel yang dihasilkan PKS Pagar Merbau dijual ke pabrik yang memproduksinya. Di stasiun ini akan dilakukan pemisahan biji dan ampas kemudian dilanjutkan dengan pemisahn inti dan cangkang. Adapun proses yang dilakukan yaitu:

3.5.9.1. Depericarper

Depericaper adalah alat yag berfungsi untuk memisahkan ampas dan biji. Pemisah terjadi dikarenakan perbedaan berat jenis antara ampas dan biji. Ampas yang kering berat jeisnya lebih ringan terhisap ke dalam vertical coloum. Pemisahini terjadi pada separating column yaitu kolom pemisah, sedangkan sistem pemisahan dikarenakan hampa udara di dalam kolom yang disebabkan oleh isapan blower. Adapun Depericarper, dapat dilihat pada gambar 3.33.

Gambar 3. 33. Depericarper

3.5.9.2. Nut Polishing Drum

Merupakan alat yang digunakan untuk membersihkan serat-serat yang masih melekat pada biji. Polishing Drum bekerja dengan cara berputar dengan kecepatan 32 rpm. Beberapa factor yang mempengaruhi keberhasilan nut polishing drum antara lain:

Kemiringan drum berputar,

Sudut kemiringan drum berputar akan menentukan lamanya biji di poles. Semakin lama biji dipoles dalam drum berputar maka mutu biji semakin baik yaitu serat yang terdapat dalam biji semakin sedikit b. Kecepatan putar polishing drum

Kecepatan putar akan mempengaruhi gaya gesekan antara drum dan biji. Putaran yang diinginkan ialah putaran yang menyebabkan biji berguling guling pada bagian dinding drum dan tidak melebihi tinggi tangkai poros drum

c. Kondisi permukaan dalam drum

Permukaan bagian dalam drum yang dibuat lobang halus dengan garis tengah 0,5 cm akan membuat proses pemolesan menjadi sempurna.

d. Hisapan angin

Bertujuan untuk membuang serat halus yang masih terdapat dipermukaan drum dan yang masih melekat pada biji akan dapat menghambat atau mengurangi gaya gesekan antara biji dengan drum. Adapun Polishing Drum, dapat dilihat pada gambar 3.34.

Gambar 3. 34. Polishing Drum

3.5.9.3. Nut Elevator

Merupakan alat yang digunakan untuk mengangkut biji-biji yang keluar dari polishing drum dengan menggunakan bucket untruk dialirkan ke nut silo. Adapun Wet Nut Evelator, dapat dilihat pada gambar 3.35.

Gambar 3. 35. Wet Nut Elevator

3.5.9.4. Nut Silo

Sebagai tempat menampung biji agar lebih mudah di proses dengan menggunakan ripple mill. Saat ini nut silo di PKS Pagar Merbau tidak diatur suhunya dengan alasan agar dapat menghemat uap. Adapun Nut Silo, dapat dilihat pada gambar 3.36.

Gambar 3. 36. Nut Silo

3.5.9.5. Dry Nut Conveyor

Adalah alat yang berfungsi untuk membawa biji dari nut silo menuju ke *Dry Nut Elevator*. *Dry nut elevator* digerakkan oleh motor yang kecepatannya dirubah menjadi lambat menggunakan *gear box*.

3.5.9.6. Dry Nut Elevator

Dry nut elevator alat ini berfungsi untuk mengangkut biji dan membawanya menuju ke nut grading drum.

3.5.9.7. Nut Grading Drum

Nut grading Drum merupakan alat yang berfungsi untuk memisahkan biji berdasarkan ukurannya sebelum masuk ke ripple mill . Alar ini berupa drum yang berlubang- lubang berdasarkan ukuran yang disesuaikann dan bekerja dengan cara berputar. Tujuan dipisahkannya biji berdasarkan ukuran yaitu agar kerja ripple mill lebih ringan. Biji dapat dibedakan menjadi 3 ukuran yaitu besar, sedang, dan kecil yang akan masuk ke ripple mill berdasarkan ukuran biji. Saat ini PKS Pagar Merbau hanya memiliki 1 nut grading screen. Biji yang telah disesuaikan ukurannya akan dimasukkan ripple mill. Biji dengan ukuran besar dan sedang akan ke ripple mill 1 dan biji yang berukuran kecil masuk ke ripple mill 2. Adapun Nut Grading Drum, dapat dilihat pada gambar 3.37.

Gambar 3. 37. Nut Grading Drum

3.5.9.8. Ripple Mill

Ripple Mill adalah alat yang dipakai untuk memecahkan biji yang telah diperam dan dikeringkan didalam silo. Komponen yang sangat penting dalam ripple mill adalah rotor. Rotor terdiri dari batang- batang besi yang bergerak mandiri untuk memecahkan biji. Adapun Ripple Mill, dapat dilihat pada gambar 3.38.

Faktor – faktor yang mempengaruhi efisiensi pemecahan adalah :

- 1. Kualitas dan kuantitas umpan
- 2. Kondisi ripple plate dan rotor bar
- 3. Jarak antara *plate* dan rotor
- 4. Kecepatan putaran ripple mill.

Gambar 3. 38. Ripple Mill

3.5.9.9. Cracked Mixture Conveyor

Cracked mixture conveyor alatini berfungsi untuk membawa pecahan biji berupa cangkang, kernel yang masih menempel dicangkang dan yang lainnya ke LTDS 1 (Light Tenera Dry Seperator).

3.5.9.10. LTDS 1 (Light Tenera Dry Seperator)

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

Alat ini merupakan alat pemisah cangkang, kernel, pecahan kernel yang masih menempel di cangkang dan lainnya. Cangkang dan kernel yang dibawa oleh *cracked mixture conveyor* akan masuk ke LTDS 1. Cangkang dan serabut atau benda lain yang ringan akan dihisap oleh *dust cyclone blower* 1 dan akan ditampung *dust cyclone* 1. Setelah cangkang akan disimpan di *shell bin* untuk dijadikan menjadi bahan bakar boiler. Kernel dan pecahannya akan dibawa ke LTDS 2 untuk dipisahkan lagi. Adapun LTDS 1, dapat dilihat pada gambar 3.39.

Gambar 3. 39. LTDS 1

3.5.9.11. LTDS 2 (Light Tenera Dry Seperator)

Alat ini berfungsi untuk memisahkan kernel dari pecahan pecahan kernel yang masih menempel pada cangkang dan yang lainnya. Cnagkang akan di hisap oleh *dust cyclone blower* 2 dan akan disimapan *shell bin* untuk dijadikan menjadi bahan bakar boiler. Kernel yang sempurna akan jatuh dan dibawa ke kernel silo dengan menggunakan transfer inti. Kernel yang tidak terpisah dari cangkangnya akan dibawa ke *claybath*. Adapun LTDS 2, dapat dilihat pada gambar 3.40.

Gambar 3, 40, LTDS 2

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

3.5.9.12. Claybath

Di *claybath* biji akan di rendam didalam air yang bercampur CaCO₃ C(*Calcium Karbonat*). CaCO₃ digunakan dalam proses agar massa jenis air bertambah 1 kg/cm² menjadi 1.17 kg/cm² dan mengakibatkan kernel dan cangkang terpisah. Ini disebabkan karena massa jenis kernel yaitu 1,07 kg/cm² lebih rendah dibandingkan dengan massa jenis cangkang 1,2 kg/cm². Kernel akamn masuk ke kernel silo melalui transfer inti dan cangkang akan disimpan *shell bin* sebagai bahan bakar boiler. Adapun Claybath, dapat dilihat pada gambar 3.41.

Gambar 3. 41. Claybath

3.5.9.13. Kernel Silo

Kernel silo merupakan tempat mengeringkan kernel yang masih mengandung air sebesar 15- 25%. Pengeringan dilakukan dengan blower dengan elemem pemanasan. Kadar air inti yang di isyaratkan 6-7%. Dalam kernel silo ini, Inti sawit dapat tahan lama sampai 6 bulan. Pemanasan pada elemen atas bersuhu 70°C, elemen tengah bersuhu 60°C dan elemen bawah 40°C. Setelah kernel dirasa kering dan kadar air telah memenuhi standar inti dalam diturunkan untuk dikirimkan ke bulking. Pada PKS Pagar Merbau terdapat 5 dengan kapasitas 10 ton. Kadar air inti yang terlalu tinggi dapat menyebabkan inti berubah warna.

Akibatnya adalah:

- 1. Inti berjamur/ membusuk
- 2. Kadar ALB dalam minyak inti tinggi
- 3. Kadar minyak yang diperoleh lebih rendah Faktor faktor yang mempengaruhi kinerja dari *kernel silo* adalah :
- 1. Temperatur
- 2. Waktu
- 3. Kualitas dan kuantitas
- 4. Kondisi dan kebersihan heater Suplay steam
- 5. Kondisi blower / fan
- 6. Kebersihan kisi kisi dalam silo
- 7. FIFO (First In First Out).

Adapun Kernel Silo, dapat dilihat pada gambar 3.42.

Gambar 3. 42. Kernel Silo

3.5.9.14. Bulking

Bulking adalah tempat yang digunakan untuk menimbun inti produksi. Alat ini berbentuk silinder, dan siap untuk dikirim ke PPIS (Pabrik Pengolahan Inti Sawit). Pada PKS Pagar Merbau terdapat 2 unit bulking dengan kapasitas penampungan 850 ton. Adapun Buking, dapat dilihat pada gambar 3.43.

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

⁻⁻⁻⁻⁻

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber 2. Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah

^{3.} Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

Gambar 3. 43. Bulking

3.5.10. Stasiun Pengolahan Air (WaterTratmment)

WaterTratmment diperlukan pada pabrik kelapa sawit dikarenakan air yang digunakan pada proses pengolahan dan air umpan boiler harus memenuhi standar. Dengan kata lain proses water treatment sesungguhnya adalah proses pengolahan air yang mengurangi dan menghilangkan kotoran yang terdapat dalam air sehingga air dapat memenuhi standart dan syaratsyarat mutu air yang diperlukan dalam penggunaanya. Di PKS PTPN II Pagar Merbau air juga dipergunakan untuk keperluan:

- a. Air domestic, yaitu yang digunakan untuk keperluan kantor dan karyawan PKS Pagar Merbau.
- b. Air proses, yaitu air yang digunakan didalam boiler untuk menghasilkan uap dan untuk pengenceran minyak sawit pada saat proses.

Adapun kandungan yang terdapat didalam air dapat dibagi dalam beberapa golongan,yaitu:

a. Zat-zat padat yang larut dalam air

Zat-zat yang larut dalam air seperti natrium, magnesium, kalsium, garam bikarbonat, sulfat, silika, dan klorida terdapat dalam bentuk ion, asam, basa maupun garam.

b. Zat-zat yang tersuspensi/melayang dalam air

Zat-zat yang tersuspensi dalam air biasanya zat yang memiliki struktur yang ringan, biasanya berbentuk padatan halus (contohnya pasir halus), lumpur, dan zat-zat organik yang berasal tumbuhan / hewan. Zat – zat tersebut akan menyebabkan kekeruhan pada air.

c. Gas – gas yang terlarut dalam air

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

Contohnya oksigen, nitrogen dan karbondioksida. Oksigen dan nitrogen banyak terdapat dalam air permukaan dan sedikit air permukaan.

Beberapa parameter mutu dan kualitas air yang harus diperhatikan adalah sebagai berikut :

1. Kesadahan.

Kesadahan atau hardness adalah banyaknya kandungan mineral kalsium (Ca²⁺) dan magnesium (Mg²⁺) yang tergantung pada air. Selain dari dua zat diatas terdapat juga unsur kimia yang dapat menyebabkan kesadahan pada air biasanya berupa kalsium karbodat (CaCO₃).

2. Total Disolved Solid (Jumlah Padatan yang Terlarut)

Total Disolved Solid (TDS) adalah pengukuran dari bahan organik dan anorganik yang terdapat pada molekul air. TDS dapat ditimbulkan dari sumber anorganik dan organik. Sumber organik biasanya berupa plankton yang hidup di air. Sumber non organik berasal dari material non organik seperti batu dan udara yang mengandung kalsium karbonat, nitrogen, sulfur, dan mineral seperti garam dan logam. Secara umum komponen-komponen pada TDS adalah kalsium, karbonat, bikarbonat, nitrat, fosfor, sodium, sulfat, klorin, besi, mangan, magnesium dan alumunium.

- 3. pH pH adalah derajat keasaman pada suatu cairan. Range nilai pH adalah 1-
- 1. Berdasarkan nilainya, pH dapat dikelompokkan menjadi tiga bagian, yaitu pH dengan *range* 1-6,9 disebut pH asam, pH 7 disebut pH normal *range* 7,114 disebut pH basa. Dalam penggunaan sebagai air umpan untuk boiler, pH untuk air umpan berada pada range 8,5-9,2.

4. Silika

Silicon dioxide atau lebih dikenal sebagai silika adalah zat yang berasal dari butiran pasir yang larut dalam air dalam bentuk molekul serta memiliki rumus kimia SiO₂. Dalam penggunaan sebagai air umpan untuk boiler, kandungan silika dalam air tidak boleh melebihi 150 ppm.

Sumber air di PKS PTPN II Pagar Merbau berasal dari sungai Galang yang terletak lebih kurang 2,5 km dari lokasi pabrik, adapun urutan dalam penjernihan air adalah sebagai berikut:

3.5.10.1. Pompa Sungai Galang

UNIVERSITAS MEDAN AREA

Berfungsi sebagai pompa air untuk dialirkan ke bak pengendapan. Adapun pompa yang digunakan adalah 2 buah berupa electromotor yang mempunyai kapasitas 30-35 ton.

3.5.10.2. Chimber

Air dipompa dari sungai galang ke bak pengendapan awal. Bak atau kolam berfungsi pengendapan kotoran- kotoran yang terikut aliran air. Pada saat pengendapan awal ini belum ada penambahan bahan- bahan kimia, hanya berdasarkan berat jenis, partikel- partikel yang mempunyai berat jenis yang lebih besar dari air akan turun kedasar kolam. Bila endapan terakumulasi sudah banyak maka endapan dibuang dengan membuka kran untuk blowdown yang terletak disamping kolam.

3.5.10.3. Claryfier

Air yang telah mengalami pengendapan awal selanjutnya dikirim ke claryfier untuk dimasukkan tawas untuk mengkoagulasikan partikel- partikel kecil yang belum terendapkan. Claryfier berbentuk tabung vertical dengan bagian bawahnya berbentuk kerucut. Claryfier berkapasitas 80 ton/jam. Air umpan masuk claryfier melalui bagian bawah. Pada ujumg pipa air masuk di beri tudung kerucut untuk mencegah tekanan balik dari dalam claryfier juga dilengkapi dengan kran pembuangan lumpur. Air yang dari bak claryfier dialirkan ke water busin. Adapun Claryfier, dapat dilihat pada gambar 3.44.

Gambar 3. 44. Claryfier

© Hak Cipta Di Lindungi Undang-Undang

Document Accepted 31/1/25

Merupakan bak beton yang berbentuk persegi yang berfungsi untuk menampung air dari clarifier untuk dialirkan ke sand filter. Volume water busin adalah 60 m². Adapun Water Busin, dapat dilihat pada gambar 3.45.

Gambar 3, 45, Water Busin

3.5.10.5. Sand Filter

Pada sand filter air yang masuk masih mengandung padatan tersuspensi disaring melalui pasir- pasir halus/ pasir kwarsa. Untuk mempercepat laju penyaringan maka saringan ini diberikan tekanan sebesar 24 Ib/in² selanjutnya air keluar pada bagian bawah menuju tower tank untuk disimpan sebelum dikirim ke pengolahan selanjutnya. Sand filter mempunyai kapasitas 10 ton/jam dan berjumlah 3 buah yang masing- masing dilengkapi dengan sebuah alat ukur udara (barometer). Adapun Sand Filter, dapat dilihat pada gambar 3.46.

Gambar 3. 46. Sand Filter

3.5.10.6. Water Tower Tank

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

1. Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

2. Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah 3. Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

Water tower tank atau menara air merupakan tangki silinder dengan kapasitas 80 m² dengan tinggi 15 m berfungsi sebagai tempat penampungan air hasil penyaringan air yang masuk ke *demint plant* stabil dan dalam kondisi kontinyu. Adapun Water Tower Tank, dapat dilihat pada gambar 3.47.

Gambar 3. 47. Water Tower Tank

3.5.10.7. Demint Plant

Air umpan yang akan dikirim ke boiler harus melalui demineralisasi terlebih dahulu. Pada unit ini terdiri dari kation exchanger dan anion exchanger dengan tujuan membuang mineral- mineral logam yang terikut dalam air dengan menggunakan ion exchanger resin. Air yang keluar dari tangki ini dinamakan air umpan yang mepunyai kadar total dissolved soliddan silika yang rendah. Adapun Demint Plant, dapat dilihat pada gambar 3.48.

Gambar 3. 48. Demint Plant

3.5.10.8. Feed Water Tank

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

^{2.} Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah

^{3.} Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

Sebagai tempat penampungan air yang berasal dari demint plant yang akan di gunakan sebagai air umpan *boiler* untuk menghasilkan *steam*. Dengan kapasitas 115 ton/jam dan dilengkapi dengan gelas level air atau gelas penduga. Adapun Feed Water Tank, dapat dilihat pada gambar 3.49.

Gambar 3. 49. Deperator Tank

3.5.10.9. Deperator Tank

Merupakan sebuah tangki pemanasan air umpan yang berbentuk drum silinder yang dilengkapi dengan *steam* injeksi terbuka, barometer dan thermometer. Pada tangki ini juga menghasilkan ion-ion terlarut seperti O₂ yang akan menyebabkan korosi didalam boiler. Suhu pemanasan berkisar 9095 °C. Adapun Deperator Tank, dapat dilihat pada gambar 3.50.

Gambar 3. 50. DaperarorTank

3.5.11. Boiler / Ketel Uap

Boiler adalah suatu bejana bertekanan penghasil uap dalam suatu pabrik kelapa sawit yang diibaratkan sebagai jantung pabrik. Hal ini disebabkan karena uap yang dihasilkan boiler merupakan sumber energi petensial uap untuk UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

 $^{2.\} Pengutipan\ hanya\ untuk\ keperluan\ pendidikan,\ penelitian\ dan\ penulisan\ karya\ ilmiah$

^{3.} Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

karena itu kestabilan tekanan uap di *boiler* merupakan faktor yang sangat penting diperhatikan untuk keberhasilan proses pengolahan. Bahan bakar yang dipergunakan untuk *boiler* adalah *shell* dan *fibre* yang dihasilkan oleh pabrik itu sendiri dengan perbandingan 1:3.

PKS PTPN II Pagar Merbau memiliki 2 unit *Boiler* dan yang aktif dipakai pada saat ini adalah 1 unit. Dan *boiler* yang dipakai pada saat ini adalah *boiler* merk Takuma N-600. Dengan kapasitas 20 ton/jam dengan tipe *boiler* jenis pipa air (*water tube boiler*). Adapun Furnace dan Boiler, dapat dilihat pada gambar 3.51.

Gambar 3. 51. (a) Furnace (b) Boiler

Komponen-Komponen Utama Pada Boiler

1. Ruang Pembakaran (furnance)

(a)

Ruang bakar adalah tempat dimana proses pembakaran cangkang dan *fibre* berlangsung. Adapun suhu yang berada dalam ruang pembakaran yaitu 500-560 °C

2. Drum Atas

Berfungsi sebagai tempat pembentukan uap yang dilengkapi dengan sekat- sekat penahan butir- butir air untuk memperkecil kemungkinan air terbawa uap masuk ke turbin.

3. Drum Bawah

Berfungsi sebagai tempat pemanasan air ketel yang didalamnya dipasang plat- plat pengumpul endapan lumpur untuk memudahkan pembuangan keluar (*blowdown*) 4. Pemanasan lanjut (*superheater*)

Merupakan bagian boiler yang berfungsi untuk mengubah uap basah dengan temperatur 150 °C menjadi up kering dengan temperatur 260 °C.

5. Dust Collector

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

^{2.} Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah

Alat ini berfungsi sebagai pengumpul abu atau penangkap abu di sepanjang aliran gas pembakaran sampai ke gas buangan.

6. Soot Blower

Alat ini berfungsi sebagai pembersih jelafga atau abu yang menempel pada pipa – pipa.

Faktor-faktor yang perlu diperhatikan adalah:

- 1.Pastikan pompa umpan baik (*boiler feed pump*) elektrik dan turbo dalam keadaan baik.
- 2. Periksa elektromotor fan.
- 3. Periksa gelombang penduga
- 4. Periksa kondisi safety valve dan kran
- 5.Buka kran ventilasi super heater dan upper drum
- 6.Blowdown 3 jam sekali untuk membuang endapan.

Berdasarkan tipe pipa, mesin *boiler* terbagi menjadi dua, yaitu *boiler* pipa air dan boiler pipa api. Yang dimaksud dengan boiler pipa air adalah air berada dalam pipa dan diluar pipa dikelilingi oleh api. Sebaliknya, pada boiler pipa api, api berada dalam pipa dan disekeliling luar pipa diisi oleh air.

3.5.11.1. Proses Kerja Boiler

Dalam ruang pembakaran pertama udara pembakaran ditiupkan oleh *Blower Forced Draft Fan* (FDF) melalui lubang – lubang kecil sekeliling dinding ruang pembakaran dan melalui kisi – kisi bagian bawah dapar (Fire Grates).

Jumlah udara yang diperlukan diatur melalui klep (Air Draft Controller) yang dikendalikan dari panel saklar ketel. Sedangkan dalam ruangan kedua, gas panas dihisap Blowerinduced Draft Fan (IDF) sehingga terjadi aliran panas dari ruangan pertama ke ruangan kedua dapur pembakaran.

Diruangan kedua dipasang sekat – sekat sedemikian rupa yang dapat memperpanjang permukaan yang dilalui gas panas, supaya gas panas tersebut dapat memanasi seluruh pipa air, sebagian permukaan luar drum atas dan seluruh bagian luar drum bawah. Peralatan Bantu Boiler diantara yaitu:

1. Air Pengisi Ketel (Boiler Feed Water) didapat dari;

Air condensate, didapat dari hasil pengembunan uap bekas yang telah digunakan sebagai pemanasan evaporator, juice heater dan vacum pan,

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

⁻⁻⁻⁻⁻

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

kemuadian ditampung dan dialirkan ke stasiun boiler sebagai air umpan pengisi ketel.

2. Deaerator

Merupakan pemanasan air sebelum dipompa kedalam ketel sebagai air pengisi. Media pemanas adalah exchaust steam pada tekanan kurang lebih 1 kg/cm³ dengan suhu kurang lebih 150 °C. Fungsi utamanya adalah menghilangkan oksigen dan untuk menghindari terjadinya karat pada dinding ketel.

3. *Induced Draft Fan* (IDF)

Induced dry fan berfungsi untuk menghisap debu hasil dari sisa pembakaran dan membuangnya keluar melalui *chimney* (cerobong asap).

4. Force Draft Fan (FDF)

Forced draft fan berfungsi untuk menghembuskan udara dari bawah sehingga bahan bakar akan terbakar dengan sempurna dan nyala api akan merata keseluruh bagian.

5. Secondary Draft Fan

Secondary draft fan berfungsi untuk menyebarkan bahan bakar.

6. Ash Hopper

Ash hopper Abu yang terbawa gas panas dari ruang pembakaran pertama terbuang jatuh di dalam pembuangan abu yang berbentuk kecurut.

7. Cerobong Asap (Chimney)

Berfungsi untuk membuang udara sisa pembakaran.

Alat- Alat Pengaman Boiler

1. Katup Pengaman (Safety Valve)

Safety Valve bekerja membuang uap apabila tekanan melebihi dari tekanan yang ditentukan sesuai dengan penyetelan katup alat ini. Umumnya pada katup pengaman tekanan uap basah (Saturated Steam) diatur pada tekanan 21 kg/cm², sedangkan pada katup pengaman uap kering tekanannya 20,5 kg/cm². Penyetelan hanya dilakukan bersama dengan petugas IPNKK setelah adanya pemeriksaan berkala.

2. Gelas Penduga (Sight Glass)

Sight Glass adalah alat untuk melihat tinggi air didalam drum aras, untuk memudahkan pengontrolan air dalam ketel selama operasi agar tidak terjadi UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

^{2.} Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah

penyumbatan – penyumbatan pada kran- kran uap air. Pada alat ini, maka perlu diadakan penyepuhan air dan uap secara periodic pada semua kran minimal setiap 3 (tiga) jam.

Gelas penduga ini dilengkapi dengan alat pengontrol air oromatis yang akan berbunyi belnya dan lampu merah akan menyala pada waktu kekurangan air. Pada waktu kelebihan air juga akan berbunyi dan lampu hijau akan menyala.

3. Kran Spei air (Blow Down Valve)

Blow Down Valve ini dipasang 2 (dua) tingkat, yaitu satu buah kran buka cepat (Quick Action Valve) dan satu buah lagi kran ulir. Bahan dari kedua kran ini dibuatdari bahan tekanan dan temperature tinggi.

4. Pengukur Tekanan (Manometer)

Manometer adalah alat pengukur tekanan uao didalam ketel yang dipasang satu buah untuk tekanan uap panas lanjut dan satu untuk tekanan uap basah. Untuk menguji kebenaran penunjuk alat ini,pada setiap manometer dipasang kran cabang tiga yang digunakan untuk memasang manometer menara (Manometer Tera).

5. Kran Uap Induk

Kran uap induk berfungsi sebagai alat untuk membuka dan menutup aliran uap ketel yang terpasang pada pipa uap induk. Alat ini terbuat dari alat tahan panas dan tekanan tinggi.

3.5.11.2. BPV (Back Pressure Vessel)

Steam keluaran dari turbin dimanfaatkan untuk proses pengolahan, untuk itu BPV digunakan untuk menampung dan mendistribusikan uap ke stasiun – stasiun pengolahan. Tekanan *steam* yang digunakan dalam proses pengolahan adalah 2,8 –3 kg/cm², oleh karena itu jika steam di BPV kurang maka steam dikirim langsung dari pipa induk melalui kran baypass. Standar Operasional Prosedur BPV

1. Tekanan uap yang dapat beroperasi dfiantara 2,8-3,0 kg/cm²

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

^{2.} Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah

- 2. Temperatur 135-140°C
- 3. Safety valve pada BPV harus berfungsi dengan baik
- 4. Pastikan semua kran pembagu uap terbuka
- 5. Pembersihan atau pemeriksaan dilakukan setiap hari Adapun BPV, dapat dilihat pada gambar 3.52.

Gambar 3. 52. Back Preassure Vessel

3.5.11.3. Turbin

Turbin merupakan alat untuk mengkonversikan energi dari *steam* menjadi energi mekanis (putaran) untuk membangkitkan energi listrik melalui *alternator*. Semua turbin dilengkapi dengan katup keselamatan (*safety valve*) untuk melindungi turbin dari kondisi pengoperasian yang tidak aman. Katup terbuka dengan mekanis pegas, dan menutup pada tekanan tertentu agar turbin berhenti.

Uap yang digunakan merupakan uap kering dari *boiler* yang bertekanan kerja 15-19 kg/cm². Di PKS Pagar Merbau memiliki alternator turbin uap 3 unit. Apabila tekanan yang masuk ke turbin tidak mencapai < 15-19 Kg / cm² maka menyebabkan pasokan listrik yang kurang, sehingga perlu digandeng dengan genset atau sebahagian dari alat atau mesin yang tidak digunakan perlu dimatikan untuk mengurangi pemakaian Listrik.

Faktor yang perlu diperhatikan:

- a. Kontrol tekanan uap masuk maximum (19 kg/cm²).
- b. Set frekuensi agar didapat daya listrik yang diharapkan.
- c. Periksa oil gear box.
- d. Pelumasan bearing shaft.
- e. Periksa temperatur oli (40 50 0 C) dan tekanan oli (2 5 bar).

UNIVERSITAS MEDAN AREA

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

^{2.} Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah

- f. Periksa sil pendingin oli.
- g. Periksa baut pengencang.
- h. Periksa dan bersihkan generator secara periodik.

Adapun Turbin, dapat dilihat pada gambar 3.53.

Gambar 3. 53. Turbin

3.5.11.4. Genset

Diesel Engine diperlukan pada saat start awal proses dan juga pada saat tenaga yang dihasilkan turbin tidak mencukupi untuk proses pengolahan. Pada saat tenaga yang dihasilkan turbin berkurang, maka genset diparalelkan dengan turbin. Genset juga diperlukan untuk menggantikan peran turbin pada saat pabrik tidak mengolah PKS Pagar Merbau memiliki 1 unit generator set. Faktor yang diperlukan adalah:

- 8. Periksa bahan bakar (solar) dan lakukan pencucian tangki solar secara perodik.
- 9. Perhatikan tekanan minyak dan temperatur mesin.
- 10. Periksa ketinggian *oli* / pelumas.
- 11. Perhatikan getaran mesin saat beroperasi.
- 12. Ganti *filter* sesuai umur pemakaian

Start Genset:

- Periksa peralatan *genset, oli*, bahan bakar, air pendingin.
- O Buka keran bahan bakar.
- O Hidupkan *genset*.
- Setelah mesin berjalan normal, pindahkan switch di MCB pada posisi ON.

Stop Genset:

O Pindahkan switch di MCB pada posisi Off.

UNIVERSITAS MEDAN AREA

- O Matikan genset.
- O Tutup keran bahan bakar.

Adapun Genset, dapat dilihat pada gambar 3.54.

Gambar 3. 54. Genset

3.5.12. Pengolahan Air Limbah

Untuk mengurangi pencemaran lingkungan akibat limbah PKS diadakan pembuangan akhir. Sebelum air limbah dialirkan kelokasi pembuangan akhir, dimana secara umum air limbah ini berasal dari stasiun- stasiun:

- a. Air kondensat dari stasiun rebusan
- b. Bekas cucian dari sludge seperator dan oil tank stasiun klarifukasi
- c. Dari prosespengempaan

Unit pengolahan limbah PKS PTPN II Pagar Merbau bertujuan untuk menaikkan mutu buangan limbah sehingga dapat dimanfaatkan kembali, dan menjaga agar limbah tidak mencemari lingkungan sekitar terutama limbah yang berbentuk cairan.

Limbah cair PKS Pagar Merbau dimanfaatkan untuk pembangkit listrik tenaga biogas (PLTBg). Limbah POME tersebut mengeluarkan gas metana (CH₄). Dengan proses anaerobic di dalam *bio-digester*, yang selanjutnya gas metana di dialirkan ke mesin ganset yang mengubah gas metana menjadi listrik.

PLTBg PKS Pagar Merbau dapat menghasilkan listrik 1 MW.

3.5.12.1. Bak Recovery Tank (sludge Recofivery)

Berfungsi sebagai tempat penampungan air kondensat atau limbah yang dihasilkan dari proses pengolahan yang mengandung kadar minyak,air, dan

UNIVERSITAS MEDAN AREA dapun Bak Recovery Tank, dapat dilihat pada gambar 3.55.

[©] Hak Cipta Di Lindungi Undang-Undang

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

^{2.} Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah

^{3.} Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

Gambar 3. 55. Bak Recovery Tank

3.5.12.2. Fat Fit

Adalah tempat memisahkan minyak, air, dan kotoran yang dari bak Recovery Tank dengan cara pengendapan yang diberi uap. Minyak yang dikutip dari Fat Fit dipompakan ke klarifikasi sedangkan air dan kotoran dialirkan ke penampungan limbah. Adapun Fat Pit, dapat dilihat pada gambar 3.56.

Gambar 3. 56. Fat Fit

3.5.12.3. Kolam Penampung Limbah

Sebagai tempat penampungan limbah akhir, dimana kotoran yang dialirkan dari Fat Fit masih terdapat campuran minyak sehingga kolam penampungan ini berfungsi sebagai tempat pengendapan minyak supaya minyak dan kotoran terpisah dan minyak tersebut dikirim ke bak Recovery tank. Adapun Kolam Penampung Limbah, dapat dilihat pada gambar 3.57.

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

^{1.} Dilawang Mangutin sahagian atau salumuh dalauman in

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber 2. Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah

^{3.} Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

© Hak Cipta Di Lindungi Undang-Undang

Gambar 3. 57. Kolam Penampung Limbah

3.6. Produk Hasil Pengolahan TBS

Hasil-hasil produksi seluruh PTPN yang bernaung dalam koordinator wilayah I,Pemasarannya dikelolah oleh kantor pemasaran bersama (KPB). Daerah pemasaran hasil produksi perkebunan yang dikelola oleh KPB dapat dibagi dua,yaitu daerah pemasaran dalam negeri dan daerah pemasaran luar negeri.

Khusus untuk pemasaran dalam negeri,kegiatannya dilaksanakan oleh KPB kepada penyalur yang telah ditetapkan yang telah di terapkan berdasarkan surat keputusan.Menteri perdagangan jadi, pemasaran CPO dari PKS pagar merbau dikelola oleh kantor pemasaran bersama (KPB).

PKS pagar merbau berada dibawah naungan PTPN II yang berpusat di tanjung morawa . Jadi semua hasil pengolahan dari pabrik ini yang akan dikirim ke KPB harus melalui perintah dari kantor direksi (kandir).Pelanggan yang akan membeli CPO dan inti sawit berurusan dengan kantor Direksi (Kandir) Tanjung Morawa dan nantinya pihak Kandir yang akan memerintahkan kepada PKS Pagar Merbau untuk mengeluarkan produksinya sebanyak yang dibutuhkan pelanggan.

a. Mutu minyak kelapa sawit

Warna minyak kelapa sawit sangat dipengaruhi oleh kandungan karoten dalam minyak tersebut. Karoten dikenal sebagai sumber vitamin A yang bersumber daari kelapa sawit tetapi mutu kelapa sawit juga dipengaruhi oleh kadar asam minyak karena jika kadar asam lemaknya tinggi maka akan timbul bau tengik dan dapat juga merusak peralatan karena kerosin. Oleh karena itu, diunit PKS Pagar Merbau selalu dilakukan poengontrolan secara rutin. Untuk pengecekan kadar air, kadar kotoran, dan kadar ALB dilakukan setiap dua jam sekali dan juga ketika ada pengiriman CPO. Selain itu dilakukan juga pengukuran

UNIVERSITAS MEDAN AREA

TOC (Total Oil Control). Pengukuran TOC ini dilakukan dengan cara mengambil sampel TBS dari tiap afdeling yang memasok sawit untuk diproduksi di PKS unit Pagar Merbau. Sampel diambil masing-masing afdeling akan dilakukan pengukuran secara berkala dilaboratorium untuk mengetahui kadar minyaknya. Selain itu dilakukan juga pengecekan nrendemen setiap ada pengiriman CPO, hal ini bertujuan agar perusahaan mengetahui apakah TBS yang diproduksi sudah sesuai dengan target rendemen yang diharapkan perusahaan.

yang diproduksi sudah sesuai dengan target rendemen yang diharapkan perusahaan.

b. Standar Mutu Kelapa Sawit

Departemen perdagangan RI telah menetapkan satndar mutu kelapa sawit, minyak inti sawit dan produk-produk hasil olahannya. Standar kualitas mutu tersebut adalah: 1. Asam lemak bebas (ALB) maks 5,0%

- 2. Kadar kotoran maks 0,02%
- 3. Kadar air maks 0,1%

Manajemen mutu di PT. Perkebunan Nusantara II menetapkan mutu stndar produksi CPO dan PKO adalah sebagai berikut:

- 1. CPO (Crude Palm Oil)
 - a. Asam lemak bebas maks 5 %
 - b. Kadar kotoran maks 0,015%
 - c. Kadar air maks 0,5 %
- 2. PKO (Palm Kernel Oil)
 - a. Asam lemak bebas maks 2%
 - b. Kadar kotoran maks 6%
 - c. Kadar air maks 7% Inti pecah maks

3.7.Tugas Khusus Mahasiswa Kerja Praktek Boiler

Boiler adalah suatu ketel uap bertekanan yang berfungsi untuk menghasilkan uap bertekanan yang digunakan dalam suatu proses produksi.

- 3.7.1. Sistem Kerja Boiler
- A. Berdasarkan Bahan Bakar
- 1. Boiler berbahan bakar gas

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

64

Boiler berbahan bakar gas adalah jenis boiler yang menggunakan bahan bakar dari gas alam atau propana. Keunggulan dari boiler ini adalah tahan lama dan tidak membutuhkan banyak perawatan. Selain itu, boiler berbahan bakar gas juga lebih ekonomis. Tetapi, boiler jenis ini biasanya tidak ramah lingkungan. Karena bahan bakar gas yang digunakan bisa menghaslkan emisi karbon dan mencemari lingkungan.

2. Boiler berbahan bakar minyak

Boiler berbahan bakar minyak biasanya menjadi alternatif untuk penggunaan di area yang tidak terjangkau gas. Boiler jenis ini biasanya memerlukan biaya yang lebih mahal dan membutuhkan ruang untuk penyimpanan stok minyak.

3. Boiler LPG

Boiler LPG (Liquefied Petroleum Gas) menggunakan bahan bakar kombinasi dari gas hidrokarbon, seperti propana dan butana. Boiler jenis ini biasanya menghasilkan emisi karbon yang lebih ramah lingkungan dibandingkan dengan boiler minyak. Namun, biaya boiler LPG bisa lebih tinggi daripada gas alam ataupun minyak.

4. Boiler listrik

Boiler listrik biasanya memerlukan biaya yang sangat mahal, karena biayanya juga tergantung pada listrik yang digunakan. Di mana biaya listrik bisa sangat tinggi dibandingkan dengan bahan bakar lain. Namun, boiler listrik bisa sangat efisien dan lebih murah untuk dipasang karena menggunakan teknologi yang lebih sederhana.

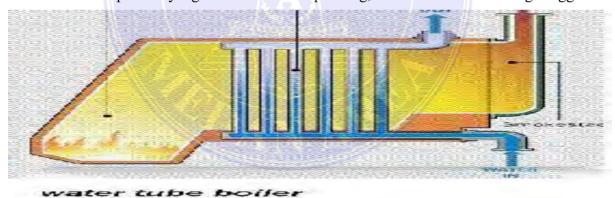
5. Boiler biomassa

Boiler biomassa adalah jenis boiler yang menggunakan pellet kayu atau serpihan kayu sebagai bahan bakarnya. Boiler ini dianggap lebih ramah lingungan daripada jenis boiler lainnya, tetapi bisa membutuhkan biaya pemasangan yang cukup tinggi

B. Berdasarkan Tipe Tube

Selain berdasarkan bahan bakarnya, boiler juag dibedakan berdasarkan pipa-pipa sirkuasinya (Type Tube). Di mana dalam perkembangannya, ini dibagi menjadi dua jenis, yaitu boiler firetube (pipa api) dan boiler watertube (pipa air). Keduanya dibedakan berdasarkan desain sirkulasi pada pipa.

1. Boiler firetube (ketel pipa api)


UNIVERSITAS MEDAN AREA

Pada boiler firetube, pipa-pipa sirkulasi diisi oleh gas yang menyala (gas panas). Di mana transfer energi panas dari pipa-pipa tersebut ditransfer segera ke air dalam bidang pemanas melalui dinding pipa panas. Dalam hal ini, air dan pipa berada dalam satu bejana. Tujuan desain pipa ini adalah untuk memudahkan distribusi panas pada air.

2. Boiler watertube (ketel pipa air)

Sementara pada jenis boiler pipa air, pipa-pipa sirkulasi diisi oleh air yang dipanaskan melalui pembakaran diluar pipa. Energi panas ditransfer dari ruang bakar (yang terpisah) ke air melalui dinding pipa air. Jenis boiler ini biasanya digunakan ketika diperlukan tekanan uap yang tinggi (3.000 psi atau lebih tinggi). Selain itu, jenis boiler pipa air juga dapat digunakan untuk menghasilkan uap jenuh atau sangat panas (superheated) yang menarik untuk keperluan yang membutuhkan uap kering, bertekanan dan berenergi tinggi.

3.7.2. S.O.P Boiler Takuma

3.7.2.1. Persiapan Pengoperasian Boiler PTPN

II Unit PKS Pagar Merbau:

- 1. Periksa kondisi ruang dapur dan boiler.
- 2. Periksa keadaan air dalam feed water tank.
- 3. Periksa instrumen panel terutama system pengamanan level air terendah.
- 4. Periksa jumlah persediaan bahan bakar.
- 5. Laksanakan pengisiian air kedalam boiler dengan normal water level.

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

^{1.} Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

- 6. Periksa pelumas semua peralatan yang bergerak dan berputar.
- 7. Periksa kefungsian pressure gauge pada upper drum.
- 8. Periksa kefungsian thermometer gas duct.
- 9. Periksa Kefungsian alat pengukur kevakuman ruang dapur pada furnace draft meter dan draft control. 10. Buka penuh air vent

3.7.2.2. Start Operasional Boiler

PTPN II Unit PKS Pagar Merbau:

- 1. Posisi level harus pada posisi normal water level.
- 2. Masukan bahan bakar hingga merata diatas Fire grate.
- 3. Lakukan pemanasan awal hingga tekanan 1-2 kg/cm².
- 4. Tutup valve air vent.
- 5. Operasikan double damper dan draft control.
- 6. Posisikan handle draft control harus pada posisi close.
- 7. Operasikan boiler Idfan.
- 8. Jika boiler Idfan beroperasi normal, handle draft control di posisikan ke auto.
- 9. Operasikan boiler Idfan dengan pembukaan damper 50-70%.
- 10. Masukan bahan bakar secara perlahan.
- 11. Buka damper Idfan sebesar 40-50%.
- 12. Naikkan tekanan secara perlahan-lahan.
- 14. Setelah tekanan mencapai <10 kg/cm², buka main stream valve secara perlahan dengan tetap memperhatikan fkultasi level air, kemudian tutup starting valve.
- 15. Setelah tekanan mencapai tekanan kerja dan bahan bakar sudah masuk secara konstan, pindahkan pengoperasian fuel feeding control dan regulating water control ke systemautomatic.

3.7.2.3. Pengawasan Operasional

PTPN II Unit PKS Pagar Merbau:

- 1. Level air harus dijaga pada normal water level.
- 2. Tekanan kerja dan Temperatur superheater dijaga agar tetap konstan sesuai dengan spesifikasi boiler.
- 3. Temperatur air umpan boiler agar dijaga 95-100 °c melalui thermal daerator

4 Isi jurnal operasional boiler setiap 1 jam sekali. UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

- 5. setiap 1-2 jam operasional boiler lakukan pengambilan air dari boiler.
- 6. Lakukan blow down dari lower drum jika TDS air melebihi batas normal yang dipersyaratkan.
- 7. Pada saat penarikan abu agar draft control tetap beroperasi secara automatic.
- 8. Ratakan bahan bakar jika terjadi penumpukan.
- 9. Laksanakan Soot blowing minimal 4 jam sekali atau pada saat temperature gas buang melebihi 350°c.
- 10. Buang abu sisa pembakaran secara berkala.

3.7.2.4. Stop operasi untuk waktu yang lama PTPN

II Unit PKS Pagar Merbau:

- 1. Hentikan supply bahan bakar
- 2. Stop operasional blower FDFAN dan IDFAN.
- 3. Buka penuh damper blower IDFAN.
- 4. Stop operasional double bamper
- 5. Tutup main steam valve.
- 6. Tutup valve airvent dan *continuous blowdown*. 7. Keluarkan sisa pembakaran dari atas fire grate.
- 8. Turunkan tekanan secara perlahan / sirkulasi hingga mencapai <10 kg/cm².
- 9. Jaga level air pada high water level.
- 10. Semua breaker peralatan diposisikan ke posisi off sedangkan untuk istrumen panel tetap pada pososo on.

3.7.2.5. Perawatan Jika Boiler Tidak Dioperasikan PTPN

II Unit PKS Pagar Merbau:

A.Perawatan Basah

- 1. Laksanakan pemanasan boiler hingga kurang lebih 2 kg/cm².
- 2. Anaslisa air dalam boiler setiap hari.
- 3. Laksanakan penggantian air (sesuai hasil lab)

B. Perawatan Kering

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

- 1. Kosongkan air dalam boiler.
- 2. Tutup rapat semua menhole drum, handhole dan header dan valve-vale.
- 3. Untuk perawatan bagian dalam drum, *header-header* dan *water tube* dapat dimasukan dengan menggunakan salah satu bahan berikut ini antara lain :
- 1. Kapur tohor.
- 2. Nitrogen (N2)

3.7.3. Jenis Boiler PTPN II Unit PKS Pagar Merbau:

Takuma Water Tube Boiler

Model : N-600 SA Max.

Tekanan uap : $23,00 \text{ kg/cm}^2$

Kapasitas uap : 20 ton/jam

Temperature uap : superheater 280°c

Pemakaian bahan bakar : 75% serat + 25% cangkang

Tahun Pembuatan Boiler: 1998

BAB 4

PENUTUP

3.8. Kesimpulan

Adapun kesimpulan yang kami peroleh selama melaksankan kegiatan PKL di PKS Pagar Merbau :

- 1. Mutu hasil pengolahan sangat dipengaruhi oleh beberapa faktor seperti mutu TBS kelapa sawit dari perkebunan, proses perebusan dengan tekanan yang cukup dan waktu yang tepat, kondisi peralatan di pabrik, pengawasan melalui laboratorium yang terus menerus terhadap hasil pengolahan pabrik.
- 2. Kapasitas pabrik dipengaruhi oleh jumlah TBS yang diterima oleh pabrik, lanjarnya peralatan pendukung proses pengolahan, sehingga tidak sering terjadi gangguan (stagnasi) padasaat pengolahan, serta aktifitas karyawan dan pengawasan kerja oleh mandor dan asisten pengolahan maupun asisten teknik dalam mendukung peralatan yang siap setiap saat operasi akan berjalan.
- 3. Upaya pengadaan SMK3 sehingga dapat mencegah terjadinya kecelakaan pada saat proses pengolahan berlangsung.
- 4. Bahan bakar boiler merupakan limbah padat yaitu fiber dan cangkang yang ada di PKS Pagar Merbau
- Turbin yang dipakai adalah turbin Nadrowsky dengan kecepatan 5000 rpm yang di kopel dengan generator pembangkit daya listrik 800 KW.
- 6. PKS Pagar Merbau menggunakan Takuma Water Tube Boiler sebagai pembangkit uap dengan kapasitas 20 ton/jam dan tekanan 20 kg/cm.

3.9. Saran

Dari hasil pengamatan Praktek Kerja Lapangan yang telah dilakukan penulis, penulis memberikan saran terhadap semua kegiatan pengolahan yang berlangsung di PKS Pagar Merbau. Saran ini diberikan penulis bukan lah sebuah kritikan melainkan pendapat yang bersifat membangun demi kemajuan PKS Pagar Merbau antara lain:

1. Penggunaan alat- alat kerja dan pengaman perlu ditingkatkan demi tercapainya

UNIVERSITAS MEDAN AREA

keamanan dan kenyamanan kerja di lingkungan pabrik.

- Sebaiknya kebersihan di lingkungan pabrik harus dijaga dan dilakukan kebersihan secara terjadwal sehingga akan mengurangi tingkat kecelakaan yang disebabkan karena lingkungan kerja yang tidak mendukung seperti lantai licin dan lainnya.
- 3. Pada setiap stasiun sebaiknya diberikan penerangan yang cukup karena pada malam hari akan proses produksi yang berjalan akan sangat bergantung pada penerangan.
- 4. Karyawan yang bekerja dilingkungan pabrik sebaiknya menggunakan APD yang lengkap agar terhindar dan dapat meminimalisasi tingkat kecelakaan kerja apabila terjadi.

REFERENSI

- [1] T. P. Badan Penelitian dan Pengembangan Pertanian. 2007. *Prospek Dan Arah Pengembangan Agribisnis Kelapa Sawit edisi ke 2*. Jakarta:

 Departemen Pertanian.
- [2] A. Darnoko.2003. *Parietas Kelapa Sawit*. http://agronomikelapasawit. blogspot.;co.id Diakses tanggal 8 September 2020.
- [3] R. Kemala. 2008. Kelapa Sawit. Jakarta: Universitas Indonesia
- [4] D. Deviani, V dan Marwiji. 2014. Analisa Kehilangan Minyak pada Crude Palm Oil (CPO) dengan Menggunakan Metode Statistical Process Control. Jakarta: Jurnal Ilmiah Teknik Industri.

LAMPIRAN	: Catatan Hari	an Magang	72	
Nama	: Henri Gunawan Sihombing			
Asisten Pengolahan	l : Pujad Hadha	d Fatanah		
Tgl	Catatan Hari	an Magang		
	Hari	Kegiatan	Paraf	
17-18/05/2022	Selasa - Rabu	Pengenulan lingkungan PKS Pagar Merbau	2	
19-20/05/2022	Kamis - Dumat	Melakukan Kega Ataktek Pada Stasiun penyortiran TBS.	2	
21/05/2022	Sabtu	Melakukan pemataman timbangan masuk dan penimbangan CPO	Sw	
23-24/05/2022	Senin-Selaca	Mengamati cara keiga Hoisting crant.	&	
25 / 05 / 2022	Rabu	Membersihkan rel stusiun perebusan.	4	
27 - 28 / 05/2022	Sumat - Sabtu	Melihat cora kerja sand trap tank	*	
30-31/05/2022	Senia - Selasa	Melakukan pembelapan tentang pemisahan kernel dan cangkang	Son Son	
02-03/06/2022	Kamis - Jumat	Mengamati cam kerp Mesin turbin uap	- X	

© Hak Cipta Di Lindungi Undang-Undang

^{2.} Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah

04/06/2022	Sabtu	Memahami cara Kerja bunch happer
06-07/06/2022	Senin - Selusa	Memahami cara Kerga bantingan.
08-03/06/2022	Rabu-kamis	Melakukan pembelagaan pada stasiun pemurian minyak (klarifikani)
10-11/06/2022	Dumat - Sabtu	Mengamah pembeluguan pada stasiun Fat-Fit.
17-18/06/2022	Jumat - Sabh	Melakukon pada pembersihan pada storange tank
20-21/06/2022	Senin-selasa	cara perawatan sop Boiler takuma
22 - 23/06/2022	Rabu - Kangg	Membantu pekerpa mengangkat bahan bakar
24-25/06/2022	Jurnat-Salbtu	keliling kebagian limbah
27-28/06/2022	Senin-selasa	keliling kebagian limbah padat

© Hak Cipta Di Lindungi Undang-Undang

		Kelling Kel	
29-30/06-2022	Rabu - Kamis	kestasiun bantingan	8
01-02/07/202	Dumat - Sabtu	Apel pagi, kebersihan	2
04-0810712022	Eenin-2mat	meminta percyapan libur dikarenatan kampus sedang kegiatan uis.	4
11-12 107 (2022	Senin - Selasa	mengamati wa Kerju mesin turbin wip	4
13-14/07/2022	Rabu-kamis	Keliling Kearea	*
15-16/07/2022	Dumat - Sabhi	Mengurus dan Menyurun berkas penyelesaran kenja praktek lapangan.	2

© Hak Cipta Di Lindungi Undang-Undang

- 1. Dilarang Mengutip sebagian atau seluruh dokumen ini tanpa mencantumkan sumber
- Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area

LAMPIRAN: Dokumentasi Magang

Foto Bersama Asissten (Pembinbing Lapangan)

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

Foto ketika berada di sandtraptank (PTPN II Unit PKS Pagar Merbau)

© Hak Cipta Di Lindungi Undang-Undang

Foto ketika berada di Screw Press (PTPN II Unit PKS Pagar Merbau)

UNIVERSITAS MEDAN AREA

© Hak Cipta Di Lindungi Undang-Undang

Document Accepted 31/1/25

Pengutipan hanya untuk keperluan pendidikan, penelitian dan penulisan karya ilmiah
 Dilarang memperbanyak sebagian atau seluruh karya ini dalam bentuk apapun tanpa izin Universitas Medan Area