Please use this identifier to cite or link to this item: https://repositori.uma.ac.id/handle/123456789/19005
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSiagian, Heldawaty-
dc.date.accessioned2022-12-26T03:00:56Z-
dc.date.available2022-12-26T03:00:56Z-
dc.date.issued2022-11-17-
dc.identifier.urihttps://repositori.uma.ac.id/handle/123456789/19005-
dc.description70 Halamanen_US
dc.description.abstractTujuan penelitian ini adalah untuk mengetahui pengaruh metode Naive Bayes Classifier dan Haralick dalam mengklasifikasikan Ulos Batak Toba. Penelitian ini menggunakan lima jenis kain Ulos yaitu Ulos Ragi Hidup, Ulos Pinuncaan, Ulos Sibolang, Ulos Sadum dan Ulos Tumtuman dimana tiap jenis kain ulos memiliki 60 sampel untuk data set latih dan 40 untuk data set uji. Algoritma yang digunakan pada proses pelatihan dan klasifikasi yaitu dengan menggunakan Naive Bayes Classifier, dimana citra sebelumnya sudah mendapatkan 6 elemen fitur dari proses ekstraksi fitur haralick. Penelitian ini diperoleh dengan menggunakan software MATLAB R2015a. Pada penelitian ini sistem klasifikasi Ulos Batak Toba menggunakan Naive Bayes Classifier dan haralick yang telah dibangun dapat melakukan proses klasifikasi Ulos Batak Toba sebanyak 500 citra, dimana 300 citra data set latih dan 200 citra data set uji dihasilkan persentase masing-masing yaitu 80,80% untuk data set latih dan 91% untuk data set uji. The purpose of this study was to determine the effect of the Naive Bayes Classifier and Haralick methods in classifying Ulos Batak Toba. This study used five types of Ulos cloth, namely Ulos Live Yeast, Ulos Pinuncaan, Ulos Sibolang, Ulos Sadum and Ulos Tumtuman where each type of ulos fabric had 60 samples for the training data set and 40 for the test data set. The algorithm used in the training and classification process is by using the Naive Bayes Classifier, where the previous image has obtained 6 feature elements from the haralick feature extraction process. This research was obtained using the MATLAB R2015a software. In this study, the Ulos Batak Toba classification system using the Naive Bayes Classifier and haralick that has been built can perform the Ulos Batak Toba classification process as many as 500 images, of which 300 images of the training data set and 200 images of the test data set the percentage of each is 80.80%. for the training data set and 91% for the test data set.en_US
dc.language.isootheren_US
dc.publisherUniversitas Medan Areaen_US
dc.relation.ispartofseriesNPM;178160094-
dc.subjectklasifikasien_US
dc.subjectcitraen_US
dc.subjectkain ulosen_US
dc.subjectnaive bayes classifieren_US
dc.subjectharalicken_US
dc.subjectclassificationen_US
dc.subjectimageen_US
dc.subjectulos clothen_US
dc.subjectnaive bayes classifieren_US
dc.subjectharalicken_US
dc.titleKlasifikasi Ulos Batak Toba Menggunakan Naïve Bayes Classifier dan Haralicken_US
dc.title.alternativeToba Batak Ulos Classification Using Naïve Bayes Classifier and Haralicken_US
dc.typeThesisen_US
Appears in Collections:SP - Informatic Engineering

Files in This Item:
File Description SizeFormat 
178160094 - Heldawaty Siagian - Fulltext.pdfCover, Abstract, Chapter I, II, III, V, Bibliography1.27 MBAdobe PDFView/Open
178160094 - Heldawaty Siagian - Chapter IV.pdf
  Restricted Access
Chapter IV922.85 kBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.