Please use this identifier to cite or link to this item: https://repositori.uma.ac.id/handle/123456789/22365
Title: Klasifikasi Tingkat Kelayakan Pemberian Bantuan Kepada Siswa Kurang Mampu Menggunakan Metode Svr (Support Vector Regression)
Other Titles: Classification of the Feasibility Level of Providing Assistance to Underprivileged Students Using the SVR (Support Vector Regression) Method
Authors: Simanjuntak, Junaidi
metadata.dc.contributor.advisor: Syah, Rahmad
Susilawati
Keywords: svr;klasifikasi;bantuan beasiswa;kurang mampu;rmse;classification;scholarship assistance;underprivileged;rmse
Issue Date: 15-Sep-2023
Publisher: Universitas Medan Area
Series/Report no.: NPM;188160014
Abstract: Pendidikan memegang peranan penting dalam mengembangkan potensi dan meningkatkan kualitas individu. Sekolah bertujuan utama untuk meningkatkan kualitas pendidikan siswa setiap tahun. Upaya pemerintah dalam meningkatkan kualitas pendidikan melibatkan pengembangan kurikulum, evaluasi sistem, dan perbaikan sarana pembelajaran. Faktor ekonomi keluarga dapat mempengaruhi kemampuan siswa dalam mengejar pendidikan. Untuk membantu siswa kurang mampu, program bantuan biaya pendidikan dan beasiswa diberikan agar mereka dapat belajar dengan giat. Di Sekolah Dasar Negeri 156474 Untemungkur IV B, proses seleksi penerimaan beasiswa masih manual, Sehingga membutuhkan waktu serta berisiko tinggi terjadi kesalahan dan kurang transparansi. Oleh karena itu, diperlukansuatu teknologi kecerdasan buatab seperti machine learning. Untuk meningkatkan efisiensi, akurasi, dan transparansi dalam seleksi penerimaan beasiswa. Dengan demikian, alokasi beasiswa dapat lebih tepat sasaran kepada siswa yang berhak dan membutuhkannya. Dengan adanya penelitian ini menggunakan metode SVR menghasilkan klasifikasi tingkat kelayakan penerima bantuan dengan menggunakan pembagian data train 70% dan data test 30% dengan nilai RMSE sebesar 0.16, dan berdasarkan hasil clasification repot nilai Rata-rata dari presisi, recall, F1-score, akurasi adalah 68%, 65%, 66%, 75% secara berurut. Education plays an important role in developing potential and improving individual quality. The school's main aim is to improve the quality of students' education every year. Government efforts to improve the quality of education involve curriculum development, system evaluation, and improving learning facilities. Family economic factors can influence students' ability to pursue education. To help underprivileged students, tuition assistance and scholarship programs are provided so that they can study hard. At State Elementary School 156474 Untemungkur IV B, the scholarship acceptance selection process is still manual, so it takes time and there is a high risk of errors and lack of transparency. Therefore, artificial intelligence technology such as machine learning is needed. To increase efficiency, accuracy and transparency in scholarship acceptance selection. In this way, the scholarship allocation can be more precisely targeted at students who are entitled and need it. With this research using the SVR method, it produces a classification of the eligibility level of aid recipients using a division of 70% train data and 30% test data with an RMSE value of 0.16, and based on the classification results, the average value of precision, recall, F1-score, accuracy are 68%, 65%, 66%, 75% respectively.
Description: 45 Halaman
URI: https://repositori.uma.ac.id/handle/123456789/22365
Appears in Collections:SP - Informatic Engineering

Files in This Item:
File Description SizeFormat 
188160014 - Junaidi Simanjuntak - Fulltext.pdfCover, Abstract, Chapter I, II, III, V, Bibliography1.01 MBAdobe PDFView/Open
188160014 - Junaidi Simanjuntak - Chapter IV.pdf
  Restricted Access
Chapter IV413.68 kBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.