Please use this identifier to cite or link to this item: https://repositori.uma.ac.id/handle/123456789/22459
Title: Turbin Gas Penggerak Generator Listrik Daya 130 Mw
Other Titles: Gas Turbine Driving Electric Generator Power 130 Mw
Authors: Ilham, Muhammad
metadata.dc.contributor.advisor: Ibrahim, Husin
Lubis, Syafrian
Keywords: turbin gas;penggerak generator listrik;daya 130 mw;gas turbine;electric generator drive;power 130 mw
Issue Date: 2002
Publisher: Universitas Medan Area
Series/Report no.: NPM;988130012
Abstract: Dari hasil perhitungan-perhitungan dan analisa sistem tnrbin gas untuk pembangkit enerf,>i 1istrik serta basil survei di lapangan, rnaka dapat dibuat beberapa kesimpulan sebagai berikut: 1. Kompresor Tipe Jmnlah tingkat Perbandingan kompresi T emperatur udara masuk Temperatur udara keluar Tekanan udara masuk Tekanan udara keluar 2. Ruang Bakar Tipe Jmnlal1 ruang bakar Tekanan udara masuk Tekanan udara keluar Temperatur udara keluar Aliran aksial 16 10,09 30°C 353,73 °c 0,993 bar 10,02 bar Tubular combustion chamber 2 buah 10,02 bar 9,82 bar 1050 °c 3. Turbin Tipe J umlah tin gkat Temperatur gas masuk T emperatur gas ke1uar 4. Sistem turbin gas Daya • Putaran Bahan bakar Aliran aksial 4 ' 1050 QC 554 QC 130.000 KW 3000 rpm Gas Alam (CI-L1) 92 Dan perlu dicatat bahwa turbin gas 2dalah " Package Unit" sehingga waktu yang dibutuhkan untuk pembangunannya relatif singkat dan sangat baik digunakan untuk memenuhi beban puncak (Peak /,oad) karena proses startnya yang cepat dan dapat menggunakan bahan bakar yang berbeda (rnisal fuel oil). Karena efisiensi turbin gas rendah jika beroperasi "Open ( .'ycle" maka untuk rnenaikkan efisiensi siklus biasanya turbin gas diprioritaskan untuk berop~ rasi dengan sik1us gabungan yaitu dengan memanfaatkan sisa energi yang terbuang setelah dimanfaatkan turbin gas, untuk memanaskan air pada boiler yang lebih dikenal dengan nama Heat Recovery Steam Generator (HRSG). Siklus gabungan kedua sistem tersebut dikena1 dengan Combined Cycle Power Plant (CCPP). From the results of calculations and analysis of the gas turbine system for energy generators, electricity and the results of field surveys, several products can be made conclusion as follows: 1. Compressor Type Number of levels Compression comparison Inlet air temperature Outlet air temperature Inlet air pressure Air pressure comes out 2. Combustion Room Type Total 1 combustion chamber Inlet air pressure Air pressure comes out Outlet air temperature Axial flow 16 10.09 30°C 353.73 °c 0.993 bars 10.02 bars Tubular combustion chamber 2 pieces 10.02 bars 9.82 bars 1050°c 3. Turbine Type Number of levels Inlet gas temperature Exit gas temperature 4. Gas turbine system Power • Round Fuel Axial flow 4' 1050 QC 554 QC 130,000 KW 3000 rpm Natural Gas (CI-L1) 92 And it should be noted that gas turbine 2 is a "Package Unit" so that time Required for construction is relatively short and very well used to meet peak loads (Peak /,oad) because the start process is fast and can use different fuels (for example fuel oil). Because the efficiency of the gas turbine is low if it operates "Open ( .'ycle" then for Increasing cycle efficiency is usually a priority for gas turbines to operate with combined cycle, namely by utilizing the remaining energy that is wasted after gas turbines are used to heat water in better known boilers with the name Heat Recovery Steam Generator (HRSG). Second combined cycle This system is known as a Combined Cycle Power Plant (CCPP).
Description: 94 Halaman
URI: https://repositori.uma.ac.id/handle/123456789/22459
Appears in Collections:SP - Mechanical Engineering

Files in This Item:
File Description SizeFormat 
988130012 - Muhammad Ilham - Fulltext.pdfCover, Abstract, Chapter I, II, III, V, Bibliography2.84 MBAdobe PDFView/Open
988130012 - Muhammad Ilham - Chapter IV.pdf
  Restricted Access
Chapter IV2.25 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.