Please use this identifier to cite or link to this item:
https://repositori.uma.ac.id/handle/123456789/22695
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Muhathir | - |
dc.contributor.author | Tamba, Melati | - |
dc.date.accessioned | 2024-01-17T02:09:31Z | - |
dc.date.available | 2024-01-17T02:09:31Z | - |
dc.date.issued | 2023-11-26 | - |
dc.identifier.uri | https://repositori.uma.ac.id/handle/123456789/22695 | - |
dc.description | 55 Halaman | en_US |
dc.description.abstract | Wajah manusia merupakan bagian tubuh yang unik dengan ciri-ciri yang berbeda pada setiap individu, seperti mata, hidung, bibir dan alis, yang menjadi identitasnya. Beberapa orang tua seringkali kesulitan mengidentifikasi anaknya jika memiliki kondisi tertentu, seperti autisme. Penelitian ini bertujuan untuk mengembangkan sebuah sistem yang disebut Autism Classification menggunakan Ekstraksi Fitur Histogram of Oriented Gradient (HOG) dengan metode Support Vector Machine (SVM). Tujuannya adalah untuk mengidentifikasi tanda-tanda awal autisme pada anak dengan menentukan tingkat kesamaan antara anak yang sedang berkembang dan mereka yang mungkin mengalami autisme. Metode penelitian ini menggunakan sistem Autism Classification, yang memanfaatkan ekstraksi fitur HOG yang dikombinasikan dengan metode SVM. Metode ini bertujuan untuk menganalisis fitur dan pola wajah untuk mengklasifikasikan anak-anak autis dan anak-anak normal. Hasil yang diperoleh menunjukkan hasil yang menjanjikan. Sistem ini mencapai Akurasi 88%, Presisi 86.5%, Recall 87%, F1-Score 86.5%, F2-Score 86%, dan Jaccard-Score 77%. Metrik ini menunjukkan keefektifan sistem dalam mengidentifikasi secara akurat anak-anak yang mungkin menderita autisme berdasarkan fitur dan pola wajah. The human face is a unique part of the body with different characteristics for each individual, such as eyes, nose, lips and eyebrows, which become its identity. Some parents often find difficulties to identify their child that have certain conditions, such as autism. This study aims to develop a system called Autism Classification using Histogram of Oriented Gradient (HOG) Feature Extraction with the Support Vector Machine (SVM) method. The goal is to identify early signs of autism in children by determining the comfort level between the developing child and those who may have autism. The employed to Autism Classification system, which utilizes the Histogram of Oriented Gradient (HOG) extraction feature combined with the Support Vector Machine (SVM) method. This method aims to analyze facial features and patterns to classify autistic children and normal children. The results obtained show promising results. This system achieves 88% ot the Accuracy, 86.5% ot the Precision, 87% Recall, 86.5% F1-Score, 86% F2-Score, and 77% Jaccard-Score. The metric demonstrates the effectiveness of the system in accurately identifying children who may have autism based on facial features and patterns. | en_US |
dc.language.iso | id | en_US |
dc.publisher | Universitas Medan Area | en_US |
dc.relation.ispartofseries | NPM;198160054 | - |
dc.subject | klasifikasi autis | en_US |
dc.subject | HOG | en_US |
dc.subject | SVM | en_US |
dc.subject | deteksi dini | en_US |
dc.subject | autism classification | en_US |
dc.subject | histogram of oriented gradient feature extraction | en_US |
dc.subject | support vector machine | en_US |
dc.subject | early detection | en_US |
dc.title | Klasifikasi Autis Menggunakan Ekstraksi Fitur Histogram of Oriented Gradient (Hog) dengan Metode Support Vector Machine (Svm) | en_US |
dc.title.alternative | Autism Classification Using Histogram of Oriented Gradient (Hog) Feature Extraction with the Support Vector Machine (SVM) Method | en_US |
dc.type | Skripsi Sarjana | en_US |
Appears in Collections: | SP - Informatic Engineering |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
198160054 - Melati Tamba - Fulltext.pdf | Cover, Abstract, Chapter I, II, III, V, Bibliography | 1.28 MB | Adobe PDF | View/Open |
198160054 - Melati Tamba - Chapter IV.pdf Restricted Access | Chapter IV | 670.87 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.