Please use this identifier to cite or link to this item:
https://repositori.uma.ac.id/handle/123456789/22717
Title: | Klasifikasi Penyakit Infeksi Kulit pada Kucing Menggunakan Algoritma Random Forest |
Other Titles: | Classification of Skin Infectious Diseases in Cats Using Random Forest Algorithm |
Authors: | Nasution, Adithya Wahyudi |
metadata.dc.contributor.advisor: | Lubis, Andre Hasudungan |
Keywords: | algoritma random forest;infeksi kulit pada kucing;klasifikasi;kucing;cats;classification;random forest algorithm;skin infection in cats |
Issue Date: | 13-Sep-2023 |
Publisher: | Universitas Medan Area |
Series/Report no.: | NPM;188160040 |
Abstract: | Kucing sebagai hewan peliharaan populer memiliki peran penting dalam kehidupan manusia. Namun, seperti hewan lain, mereka rentan terhadap berbagai penyakit, termasuk infeksi kulit. Infeksi kulit pada kucing dapat disebabkan oleh bakteri, jamur, virus, atau parasit, menyebabkan gejala seperti gatal dan infeksi yang berpotensi fatal. Diagnosa dini dan pengobatan yang tepat sangat penting untuk mencegah dampak buruk. Saat ini, diagnosis sering dilakukan oleh dokter hewan dengan pemeriksaan fisik dan tes laboratorium, yang memakan waktu dan biaya. Solusi lebih efisien diperlukan, seperti penggunaan algoritma pembelajaran mesin. Algoritma Random Forest, yang efektif dalam mengatasi masalah klasifikasi dengan fitur yang kompleks dan tidak linier, menjadi alternatif yang dapat digunakan. Penelitian ini bertujuan untuk mengklasifikasikan penyakit infeksi kulit pada kucing menggunakan algoritma Random Forest. Jenis penyakit yang diklasifikasikan adalah dermatitis alergi, infeksi jamur, kudis dan tungau telinga, dengan menggunakan 8 gejala sebagai atribut, yakni gatal-gatal, kulit kering, kulit kemerahan, bulu rontok, luka, kulit bersisik, kulit berkerak, penumpukan kotoran pada telinga. Jumlah data yang digunakan sebanyak 800 yang bersumber dari data primer. Hasil penelitian menunjukkan tingkat kemampuan algoritma Random Forest dalam melakukan klasifikasi penyakit infeksi kulit pada kucing mencapai nilai performa yang tinggi pada data training (akurasi 95,9%, presisi 96,2%, dan recall 95,9%) serta data testing (akurasi 98,5%, presisi 98,5%, dan recall 98,5,7%). Hasil pengklasifikasian menunjukkan bahwa pada data testing terdapat sejumlah penyakit dermatitis alergi berjumlah 70 (25,74%), penyakit infeksi jamur berjumlah 69 (25,37%), penyakit tungau telinga berjumlah 68 (25%), dan penyakit kudis berjumlah 65 (23,90%). Cats, as popular pets, play an important role in people's lives. However, like other animals, they are susceptible to various diseases, including skin infections. Skin infections in cats can be caused by bacteria, fungi, viruses or parasites, causing symptoms such as itching and potentially fatal infections. Early diagnosis and proper treatment are essential to prevent adverse effects. Currently, diagnosis is often done by veterinarians with physical examinations and laboratory tests, which is time-consuming and costly. More efficient solutions are needed, such as the use of machine learning algorithms. Random Forest algorithm, which is effective in overcoming classification problems with complex and non-linear features, is an alternative that can be used. This study aims to classify skin infection diseases in cats using Random Forest algorithm. The types of diseases classified are allergic dermatitis, fungal infections, scabies and ear mites, using 8 symptoms as attributes, namely itching, dry skin, reddish skin, fur loss, wounds, scaly skin, crusty skin, accumulation of dirt in the ears. The amount of data used was 800 which was sourced from primary data. The results showed that the level of ability of the Random Forest algorithm in classifying skin infectious diseases in cats reached high performance values in training data (95.9% accuracy, 96.2% precision, and 95.9% recall) and testing data (98.5% accuracy, 98.5% precision, and 98.5% recall). The classification results show that in the testing data there are a number of allergic dermatitis diseases totalling 70 (25.74%), fungal infections totalling 69 (25.37%), ear mites totalling 68 (25%), and scabies totalling 65 (23.90%). |
Description: | 67 Halaman |
URI: | https://repositori.uma.ac.id/handle/123456789/22717 |
Appears in Collections: | SP - Informatic Engineering |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
188160040 - Adithya Wahyudi Nasution - Fulltext.pdf | Cover, Abstract, Chapter I, II, III, V, Bibliography | 868.82 kB | Adobe PDF | View/Open |
188160040 - Adithya Wahyudi Nasution - Chapter IV.pdf Restricted Access | Chapter IV | 367.61 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.