Please use this identifier to cite or link to this item: https://repositori.uma.ac.id/handle/123456789/24194
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSatria, Habib-
dc.contributor.authorHarahap, Khamel Fasha-
dc.date.accessioned2024-06-05T01:50:08Z-
dc.date.available2024-06-05T01:50:08Z-
dc.date.issued2024-04-05-
dc.identifier.urihttps://repositori.uma.ac.id/handle/123456789/24194-
dc.description53 Halamanen_US
dc.description.abstractPenelitian ini mengusulkan pengembangan sistem pendeteksi kesalahan fitur wajah secara realtime pada alat Faceprint untuk meningkatkan akurasi proses absensi. Alat Faceprint digunakan sebagai solusi modern dalam mengelola kehadiran pegawai, tetapi kesalahan deteksi fitur wajah dapat memengaruhi kinerja sistem secara keseluruhan. Dengan menggunakan teknologi pengolahan citra dan kecerdasan buatan, sistem yang diusulkan dapat secara cepat dan akurat mengidentifikasi serta mengkoreksi kesalahan pada fitur wajah selama proses absensi berlangsung. Penelitian dilakukan untuk mengukur tingkat keberhasilan dan efisiensi sistem, dengan harapan hasil penelitian ini dapat menjadi kontribusi signifikan dalam meningkatkan keandalan alat Faceprint sebagai alat absensi berbasis wajah. Penelitian ini menggunakan metode pendekatan Jaringan saraf tituan jaringan lapis tunggal (ADALINE) dengan metode Widrow-Hoff dalam pembangunannya sehingga pada hasil akhir yang didapatkan metode memiliki akurasi sebesar 86 % dalam mengetahui kesalahan pada fitur wajah. This research proposes the development of a real-time facial feature error detection system on the Faceprint tool to increase the accuracy of the attendance process. The Faceprint tool is used as a modern solution for managing employee attendance, but facial feature detection errors can impact overall system performance. By using image processing technology and artificial intelligence, the proposed system can quickly and accurately identify and correct errors in facial features during the attendance process. The research was conducted to measure the level of success and efficiency of the system, with the hope that the results of this research can be a significant contribution in increasing the reliability of the Faceprint tool as a face-based attendance tool. This research uses a single-layer artificial neural network approach (ADALINE) with the Widrow-Hoff method in its development so that the final results obtained by the method have an accuracy of 86% in detecting errors in facial features.en_US
dc.language.isoiden_US
dc.publisherUniversitas Medan Areaen_US
dc.relation.ispartofseriesNPM;208120037-
dc.subjectdetesi wajah realtimeen_US
dc.subjectwidrow-hoffen_US
dc.subjectalat faceprinten_US
dc.subjectrealtime face detectionen_US
dc.subjectfaceprint toolen_US
dc.titleSistem Pendeteksi Kesalahan Fitur Wajah Secara Realtime pada Alat Face Print untuk Absensien_US
dc.title.alternativeRealtime Facial Feature Error Detection System on Face Print Tools for Attendanceen_US
dc.typeSkripsi Sarjanaen_US
Appears in Collections:SP - Electrical Engineering

Files in This Item:
File Description SizeFormat 
208120037 - Khamel Fasha Harahap - Fulltext.pdfCover, Abstract, Chapter I, II, III, V, Bibliography1.36 MBAdobe PDFView/Open
208120037 - Khamel Fasha Harahap - Chapter IV.pdf
  Restricted Access
Chapter IV1.08 MBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.