Please use this identifier to cite or link to this item:
https://repositori.uma.ac.id/handle/123456789/24551
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Lubis, Andre Hasudungan | - |
dc.contributor.author | Ramayana, Elysa | - |
dc.date.accessioned | 2024-07-09T05:35:48Z | - |
dc.date.available | 2024-07-09T05:35:48Z | - |
dc.date.issued | 2024-04 | - |
dc.identifier.uri | https://repositori.uma.ac.id/handle/123456789/24551 | - |
dc.description | 76 Halaman | en_US |
dc.description.abstract | Teknologi Informasi dan Komunikasi (TIK), terutama kecerdasan buatan (Artificial Intelligence), telah menjadi strategi penting dalam memajukan bisnis dan industri ini. Penelitian ini mengusulkan penerapan algoritma K-Medoids dalam mengcluster produk toko Arumi Shop, dengan fokus pada pemahaman pola penjualan untuk meningkatkan pengelolaan data. Pengolahan data penjualan masih dilakukan secara manual, perlu ditingkatkan agar pemilik toko dapat memahami perkembangan penjualan dengan lebih efisien. Oleh karena itu, penelitian ini menghadirkan sistem cerdas berbasis web menggunakan algoritma K-Medoids untuk mengcluster produk. Hasil clustering menunjukkan bahwa terdapat tiga kelompok produk, yaitu 312 produk laris, 312 produk cukup laris, dan 176 produk kurang laris. Evaluasi hasil clustering menggunakan David Bouldin Index menunjukkan nilai 0,664, mengindikasikan bahwa hasil cluster dapat dianggap baik. Dengan pemanfaatan teknik clustering, pemilik toko dapat dengan mudah mengevaluasi dan memahami performa penjualan produk. Implikasi penelitian ini adalah memberikan dasar untuk pengembangan sistem cerdas yang dapat membantu pemilik toko dalam mengoptimalkan strategi penjualan dan pengelolaan stok. Information and Communication Technology (ICT), especially artificial intelligence (Artificial Intelligence), has become an important strategy in advancing business and industry This. This research proposes the application of the K-Medoids algorithm in clustering Arumi Shop store products, with a focus on understanding sales patterns for improve data management. Sales data processing is still being carried out manual, needs to be improved so that shop owners can understand developments sales more efficiently. Therefore, this research presents a system web-based intelligent using the K-Medoids algorithm for clustering product. The clustering results show that there are three product groups, namely 312 products are selling well, 312 products are selling well, and 176 products are not selling well. Evaluation clustering results using the David Bouldin Index show a value of 0.664, indicates that the cluster results can be considered good. With utilization clustering techniques, shop owners can easily evaluate and understand product sales performance. The implication of this research is to provide a basis for the development of intelligent systems that can help shop owners in optimize sales strategies and stock management. | en_US |
dc.language.iso | id | en_US |
dc.publisher | Universitas Medan Area | en_US |
dc.relation.ispartofseries | NPM;198160021 | - |
dc.subject | clustering | en_US |
dc.subject | produk fashion | en_US |
dc.subject | K-medoids | en_US |
dc.subject | sistem cerdas | en_US |
dc.title | Sistem Cerdas Klasterisasi Produk Fashion Terlaris pada Toko Arumi Shop kota Binjai Menggunakan Algoritma K Medoids | en_US |
dc.title.alternative | Intelligent System for Clustering the Best-Selling Fashion Products at the Arumi Shop in Binjai City Using the K Medoids Algorithm | en_US |
dc.type | Thesis | en_US |
Appears in Collections: | SP - Informatic Engineering |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
198160021 - Elysa Ramayana - Chapter IV.pdf Restricted Access | Chapter IV | 720.53 kB | Adobe PDF | View/Open Request a copy |
198160021 - Elysa Ramayana - Fulltext.pdf | Cover, Abstract, Chapter I, II, III, V, Bibliography | 3.11 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.