Please use this identifier to cite or link to this item: https://repositori.uma.ac.id/handle/123456789/26343
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSyah, Rahmad-
dc.contributor.authorFitra, Akbario-
dc.date.accessioned2025-01-16T07:22:01Z-
dc.date.available2025-01-16T07:22:01Z-
dc.date.issued2024-10-
dc.identifier.urihttps://repositori.uma.ac.id/handle/123456789/26343-
dc.description15 Halamanen_US
dc.description.abstractPenelitian ini bertujuan untuk menghasilkan tingkat akurasi sensitivitas perbandingan antara metode fuzzy time series dan artificial neural network pada prakiraan cuaca. Latar belakang masalah yang diidentifikasi adalah kondisi cuaca yang selalu berubah-ubah sehingga dibutuhkan suatu perkembangan sistem untuk dapat membantu mendapatkan nilai akurasi dari prakiraan cuaca dengan memperhatikan sensitivitas dari hasil perbandingan antara dua metode. Hasil penelitian menunjukkan bahwa Artificial Neural Network efektif dalam memberikan nilai prakiraan cuaca sesuai dengan dataset yang ada, sedangkan Fuzzy Time Series mampu menghasilkan nilai akurasi sensitivitas berdasarkan dataset yang ada. Penelitian ini juga mengungkapkan bahwa kedua metode cukup baik dalam menentukan hasil akurasi pada sensitivitas prakiraan cuaca untuk memenuhi kebutuhan pengguna. Kesimpulan dari penelitian ini ialah kedua metode dapat memberikan solusi yang tepat untuk perkembangan sistem prakiraan cuaca yang dapat digunakan oleh pengguna. This research aims to produce a comparative level of sensitivity accuracy between fuzzy time series and artificial neural network methods in weather forecasting. The background to the problem identified is that weather conditions are always changing, so a system development is needed to help obtain accuracy values from weather forecasts by paying attention to the sensitivity of the comparison results between the two methods. The research results show that the Artificial Neural Network is effective in providing weather forecast values according to existing datasets, while the Fuzzy Time Series is able to produce sensitivity accuracy values based on existing datasets. This research also reveals that both methods are quite good in determining accuracy results on weather forecast sensitivity to meet user needs. The conclusion of this research is that both methods can provide the right solution for the development of a weather forecasting system that can be used by users.en_US
dc.language.isoiden_US
dc.publisherUniversitas Medan Areaen_US
dc.relation.ispartofseriesNPM;178160058-
dc.subjectsensitivitas analisisen_US
dc.subjectprakiraan cuacaen_US
dc.subjectfuzzy time seriesen_US
dc.subjectartificial neural networken_US
dc.subjectsensitivity analysisen_US
dc.subjectweather forecastingen_US
dc.subjectfuzzy time seriesen_US
dc.titleSensitivitas Analisis Prakiraan Cuaca pada Perbandingan Metode Fuzzy Time Series Dan Artificial Neural Networken_US
dc.title.alternativeSensitivity Of Weather Forecast Analysis In Comparison Of Fuzzy Time Series And Artificial Neural Network Methodsen_US
dc.typeThesisen_US
Appears in Collections:SP - Informatic Engineering

Files in This Item:
File Description SizeFormat 
178160058 - Akbario Fitra Fulltext.pdfCover, Abstract, Chapter I, II, III, IV & V, Bibliography1.12 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.