Please use this identifier to cite or link to this item:
https://repositori.uma.ac.id/handle/123456789/26471
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Khair, Fadila | - |
dc.date.accessioned | 2025-01-31T04:47:12Z | - |
dc.date.available | 2025-01-31T04:47:12Z | - |
dc.date.issued | 2021-01 | - |
dc.identifier.uri | https://repositori.uma.ac.id/handle/123456789/26471 | - |
dc.description | 5 Halaman | en_US |
dc.description.abstract | Pengenalan bacaan Al-Quran melalui teknologi pengolahan suara telah menjadi topik yang menarik untuk dikembangkan, terutama dalam meningkatkan akurasi dan efektivitas pembelajaran Al-Quran. Penelitian ini bertujuan untuk menganalisis penerapan algoritma Support Vector Machine (SVM) dalam mengenali bacaan Ayat Al-Quran Surah Al-Mu’minun Ayat 1-5. Data yang digunakan dalam penelitian ini terdiri dari rekaman suara pembacaan ayat-ayat tersebut yang telah diproses melalui ekstraksi fitur menggunakan metode Mel-Frequency Cepstral Coefficients (MFCC). Model SVM dilatih menggunakan data latih yang telah diolah, dan dievaluasi menggunakan data uji untuk mengukur kinerjanya dalam hal akurasi dan efisiensi pengenalan suara. Hasil penelitian menunjukkan bahwa SVM dapat digunakan dengan baik dalam mengenali bacaan Al-Quran, dengan tingkat akurasi yang memadai. Meskipun demikian, tantangan dalam pengenalan variasi bacaan masih perlu diatasi untuk meningkatkan kinerja sistem ini. Penelitian ini memberikan kontribusi dalam pengembangan teknologi pengenalan suara untuk aplikasi berbasis Al-Quran dan memberikan saran untuk penelitian selanjutnya dalam mengoptimalkan algoritma dan memperluas cakupan data. The recognition of Quranic recitation through speech processing technology has become an interesting topic for development, particularly in improving the accuracy and effectiveness of Quranic learning. This study aims to analyze the application of the Support Vector Machine (SVM) algorithm in recognizing the recitation of Surah Al-Mu’minun Ayat 1-5. The data used in this study consists of audio recordings of these verses, which have been processed through feature extraction using the Mel-Frequency Cepstral Coefficients (MFCC) method. The SVM model was trained using the processed training data and evaluated using test data to measure its performance in terms of accuracy and efficiency in speech recognition. The results of the study show that SVM can be effectively used for Quranic recitation recognition, with satisfactory accuracy levels. However, challenges in recognizing variations in recitation still need to be addressed to improve the system's performance. This study contributes to the development of speech recognition technology for Quran-based applications and provides recommendations for future research to optimize algorithms and expand the data scope. | en_US |
dc.language.iso | id | en_US |
dc.publisher | UNIVERSITAS MEDAN AREA | en_US |
dc.subject | pengenalan suara | en_US |
dc.subject | support vector machine | en_US |
dc.subject | bacaan al-quran | en_US |
dc.subject | mfcc | en_US |
dc.subject | al-mu’minun | en_US |
dc.subject | speech recognition | en_US |
dc.subject | support vector machine | en_US |
dc.subject | quranic recitation | en_US |
dc.subject | mfcc | en_US |
dc.title | Analisis Support Vector Marchine Dalam Pengenalan Bacaan Ayat Al-Quran surah Al-Mu’minun ayat 1-5 | en_US |
dc.title.alternative | Support Vector Marchine Analysis in Introduction to Reading Al-Quran Verses Surah Al-Mu’minun Verses 1-5 | en_US |
dc.type | Other | en_US |
Appears in Collections: | SP - Informatic Engineering |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Fadila Khair.pdf | Fulltext | 1.54 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.