Please use this identifier to cite or link to this item:
https://repositori.uma.ac.id/handle/123456789/27354
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Susilawati | - |
dc.contributor.author | Andrian, Elva | - |
dc.date.accessioned | 2025-05-26T07:59:18Z | - |
dc.date.available | 2025-05-26T07:59:18Z | - |
dc.date.issued | 2025-05 | - |
dc.identifier.uri | https://repositori.uma.ac.id/handle/123456789/27354 | - |
dc.description | 12 Halaman | en_US |
dc.description.abstract | Pengenalan tulisan tangan angka merupakan suatu proses mengenali dan mengidentikasi angka menggunakan algoritma kecerdasan buatan seperti Convolutional Neural Network (CNN). Penerapan pengenalan tulisan tangan angka bisa dikembangkan dan digunakan dalam identifikasi nomor kode pos pada surat, identifikasi nominal pada cek bank dan lainnya. Namun sebelum melakukan penerapan tersebut dibutuhkan pelatihan model pada algoritma yang akan digunakan supaya pengenalan angka menjadi tepat karena permasalahan yang dihadapi dalam mengenali tulisan tangan angka ialah gambar atau data tulisan yang beragam dan sulit diidentifikasi. Pada penelitian ini digunakan algoritma CNN dengan arsitektur SquuezeNet dengan dataset MNIST (Modified National Institute of Standards and Techology) yang terbagi atas 60000 data latih dan 10000 data uji. Platform yang digunakan untuk melakukan proses pelatihan dan pengujian yaitu Google Colab. Pelatihan dilakukan sebanyak 12 kali menggunakan hyperparameter seperti Optimizer yaitu Adam, SGD, dan RMSprop, Learning rate yaitu 0.1, 0.01, 0.001, 0.0001 dan Batch Size 64. Berdasarkan hasil penelitian dari 12 model yang dilatih diperoleh 1 model dengan hasil terbaik pada Optimizer yaitu Adam, Learning rate yaitu 0.0001 dan Batch Size 64 menghasilkan akurasi sebesar 99.11%. Handwritten digit recognition is a process of recognizing and identifying numbers using artificial intelligence algorithms such as Convolutional Neural Network (CNN). The application of handwritten number recognition can be developed and used in identifying postal code numbers on letters, identifying nominal amounts on bank checks and others. However, before carrying out the application, model training is needed on the algorithm that will be used so that number recognition is accurate because the problem faced in recognizing handwritten numbers is that images or written data are diverse and difficult to identify. In this study, the CNN algorithm was used with the SquuezeNet architecture with the MNIST (Modified National Institute of Standards and Technology) dataset which is divided into 60,000 training data and 10,000 test data. The platform used to carry out the training and testing process is Google Colab. Training was carried out 12 times using hyperparameters such as Optimizer namely Adam, SGD, and RMSprop, Learning rate namely 0.1, 0.01, 0.001, 0.0001 and Batch Size 64. Based on the research results from 12 trained models, 1 model was obtained with the best results on the Optimizer namely Adam, Learning rate namely 0.0001 and Batch Size 64 resulting in an accuracy of 99.11%. | en_US |
dc.language.iso | id | en_US |
dc.publisher | Universitas Medan Area | en_US |
dc.relation.ispartofseries | NPM;198160045 | - |
dc.subject | CNN | en_US |
dc.subject | MNIST | en_US |
dc.subject | Squeeze Net | en_US |
dc.subject | Handwritten digit recignition | en_US |
dc.subject | Pengenalan tulisan tangan angka | en_US |
dc.title | Pengenalan Tulisan Tangan Angka Pada Dataset MNIST Menggunakan Arsitektur SqueezeNet | en_US |
dc.title.alternative | Handwritten Number Recognition on MNIST Dataset Using SqueezeNet Architecture | en_US |
dc.type | Thesis | en_US |
Appears in Collections: | SP - Informatic Engineering |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
198160045 - Elva Andrian - Fulltext.pdf | Fulltext | 757.83 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.