Please use this identifier to cite or link to this item: https://repositori.uma.ac.id/handle/123456789/27362
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSembiring, Arnes-
dc.contributor.authorRay, Raja Pahlefi-
dc.date.accessioned2025-05-27T05:06:48Z-
dc.date.available2025-05-27T05:06:48Z-
dc.date.issued2025-05-
dc.identifier.urihttps://repositori.uma.ac.id/handle/123456789/27362-
dc.description14 Halamanen_US
dc.description.abstractPenelitian ini bertujuan untuk menganalisis pengaruh lima jenis fungsi aktivasi—ReLU, LeakyReLU, ELU, Sigmoid, dan Tanh terhadap performa model Convolutional Neural Network (CNN) dalam tugas klasifikasi citra menjadi tiga kelas: kucing, anjing, dan hewan liar. Evaluasi dilakukan menggunakan metrik akurasi validasi, grafik pertumbuhan akurasi per epoch, serta analisis confusion matrix. Hasil menunjukkan bahwa fungsi aktivasi modern seperti LeakyReLU, ELU, dan ReLU mampu memberikan akurasi tinggi dengan distribusi prediksi yang seimbang, mengindikasikan efektivitasnya dalam mengatasi permasalahan vanishing gradient dan meningkatkan kemampuan generalisasi model. Sebaliknya, fungsi klasik seperti Sigmoid dan Tanh menunjukkan performa yang sangat buruk, dengan prediksi tidak seimbang dan akurasi stagnan. Dengan demikian, pemilihan fungsi aktivasi terbukti menjadi faktor krusial dalam membangun model CNN yang optimal untuk klasifikasi citra. Penelitian ini merekomendasikan penggunaan fungsi aktivasi berbasis ReLU, khususnya LeakyReLU, sebagai pilihan utama dalam pengembangan model klasifikasi citra multi-kelas. This study aims to analyze the impact of five activation functions—ReLU, LeakyReLU, ELU, Sigmoid, and Tanh—on the performance of a Convolutional Neural Network (CNN) model for image classification into three categories: cats, dogs, and wild animals. The evaluation was conducted using validation accuracy metrics, accuracy trends across training epochs, and confusion matrix analysis. The results show that modern activation functions such as LeakyReLU, ELU, and ReLU yield high accuracy and balanced predictions, demonstrating their effectiveness in mitigating vanishing gradient issues and enhancing the model's generalization capability. In contrast, classical functions like Sigmoid and Tanh performed poorly, producing imbalanced predictions and stagnant accuracy Therefore, the choice of activation function plays a critical role in building an optimal CNN model for image classification tasks. This study recommends ReLU-based activation functions, particularly LeakyReLU, as the primary choice for developing multi-class image classification models.en_US
dc.language.isoiden_US
dc.publisherUniversitas Medan Areaen_US
dc.relation.ispartofseriesNPM;198160062-
dc.subjectImage Classificationen_US
dc.subjectCNNen_US
dc.subjectActivation Functionen_US
dc.subjectModel Evaluationen_US
dc.subjectConfusion Matrixen_US
dc.subjectEvaluasi Modelen_US
dc.subjectKlasifikasi Gambaren_US
dc.subjectFungsi Aktivasien_US
dc.titleAnalisis Pengaruh Fungsi Aktivasi CNN terhadap Performa Klasifikasi Hewanen_US
dc.title.alternativeAnalysis of the Effect of CNN Activation Function on Animal Classification Performanceen_US
dc.typeThesisen_US
Appears in Collections:SP - Informatic Engineering

Files in This Item:
File Description SizeFormat 
198160062 - Raja Pahlefi Ray - Fulltext.pdfFullttext790.01 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.