Please use this identifier to cite or link to this item: https://repositori.uma.ac.id/handle/123456789/27529
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMuliono, Rizki-
dc.contributor.authorAndrian, Yohannes-
dc.date.accessioned2025-06-18T02:17:09Z-
dc.date.available2025-06-18T02:17:09Z-
dc.date.issued2025-04-
dc.identifier.urihttps://repositori.uma.ac.id/handle/123456789/27529-
dc.description11 Halamanen_US
dc.description.abstractSegmentasi pelanggan merupakan salah satu strategi penting dalam pemasaran e-commerce untuk meningkatkan efektivitas promosi dan kepuasan pelanggan. Segmentasi atau pengelompokan dapat digunakan sebagai landasan untuk menentukan tingkat transaksi pelanggan sehingga dapat mempermudah membagikan berbagai promosi sesuai dengan tingkat transaksinya. Proses segmentasi dapat dilakukan dengan dengan membuat sistem data mining dengan metode K-Means Clustering. Melalui penerapan metode K-Means Clustering dalam segmentasi pelanggan, maka proses pengelompokan dapat diproses dengan cepat dan akurat. Segmentasi pelanggan dibagi menjadi 3 kelompok yaitu C1, C2 dan C3. C1 diperoleh dari data yang memiliki transaksi tertinggi. C2 diperoleh dari data yang memiliki transaksi sedang. C3 diperoleh dari data yang memiliki transaksi terendah. hasil segmentasi pelanggan setelah melakukan pengujian terhadap 101 data yaitu 30 pelanggan memiliki transaksi tertinggi, 36 transaksi sedang dan 35 transaksi terandah. C1 sebanyak 30%, C2 sebanyak 36% dan C3 sebanyak 35%. Customer segmentation is one of the important strategies in e-commerce marketing to increase the effectiveness of promotions and customer satisfaction. Segmentation or grouping can be used as a basis for determining the level of customer transactions so that it can facilitate sharing various promotions according to their transaction levels. The segmentation process can be done by creating a data mining system with the K-Means Clustering method. By applying the K-Means Clustering method in customer segmentation, the grouping process can be processed quickly and accurately. Customer segmentation is divided into 3 groups, namely C1, C2 and C3. C1 is obtained from data that has the highest transactions. C2 is obtained from data that has medium transactions. C3 is obtained from data that has the lowest transactions. The results of customer segmentation after testing 101 data are 30 customers with the highest transactions, 36 medium transactions and 35 lowest transactions. C1 is 30%, C2 is 36% and C3 is 35%.en_US
dc.language.isoiden_US
dc.publisherUniversitas Medan Areaen_US
dc.relation.ispartofseriesNPM;208160023-
dc.subjectData Miningen_US
dc.subjectClusteringen_US
dc.subjectK-Means Clusteringen_US
dc.subjectCustomersen_US
dc.subjectSegmentationen_US
dc.subjectPengalompokanen_US
dc.subjectPelangganen_US
dc.titlePenerapan Algoritma K-Means dalam Segmentasi Pelanggan untuk Meningkatkan Strategi Pemasaran di E-Commerceen_US
dc.title.alternativeApplication of K-Means Algorithm in Customer Segmentation to Improve Marketing Strategy in E-Commerceen_US
dc.typeArticleen_US
Appears in Collections:SP - Informatic Engineering

Files in This Item:
File Description SizeFormat 
208160023 - Yohannes Andrian - Fulltext.pdfFulltext817.47 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.