Please use this identifier to cite or link to this item:
https://repositori.uma.ac.id/handle/123456789/28517
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Wijaya, Muslim | - |
dc.contributor.author | Barus, Silvia Mileniati | - |
dc.date.accessioned | 2025-09-11T08:51:39Z | - |
dc.date.available | 2025-09-11T08:51:39Z | - |
dc.date.issued | 2025-05-15 | - |
dc.identifier.uri | https://repositori.uma.ac.id/handle/123456789/28517 | - |
dc.description.abstract | Penelitian ini bertujuan untuk menganalisis pengaruh Investment Opportunity Set (IOS) dan Pertumbuhan Laba (PL) terhadap Kualitas Laba (KL) pada perusahaan sektor Real Estate & Property yang terdaftar di Bursa Efek Indonesia. Sampel yang digunakan sebanyak 33 perusahaan dengan data selama tiga tahun. Metode analisis yang digunakan adalah regresi linier berganda, dengan berbagai pengujian asumsi klasik, antara lain uji normalitas, multikolinearitas, heteroskedastisitas, dan autokorelasi. Hasil uji normalitas menunjukkan bahwa data berdistribusi normal. Uji multikolinearitas menunjukkan tidak adanya hubungan antar variabel independen yang kuat. Uji heteroskedastisitas menunjukkan bahwa tidak terdapat pola tertentu dalam penyebaran residual. Hasil uji autokorelasi juga menunjukkan tidak adanya gejala autokorelasi dalam model. Namun, hasil uji koefisien determinasi menunjukkan bahwa IOS dan PL hanya menjelaskan 8,6% dari variasi Kualitas Laba. Uji F menunjukkan bahwa model regresi tidak signifikan secara simultan, dan uji t menunjukkan bahwa baik IOS maupun PL tidak berpengaruh signifikan secara parsial terhadap Kualitas Laba. Dengan demikian, dapat disimpulkan bahwa IOS dan Pertumbuhan Laba tidak memiliki pengaruh yang signifikan terhadap Kualitas Laba pada perusahaan yang diteliti. This study aims to analyze the effect of Investment Opportunity Set (IOS) and Earnings Growth (PL) on Earnings Quality (KL) in Real Estate & Property sector companies listed on the Indonesia Stock Exchange. The sample used was 33 companies with data for three years. The analysis method used is multiple linear regression, with various classical assumption tests, including normality, multicollinearity, heteroscedasticity, and autocorrelation tests. The normality test results show that the data is normally distributed. The multicollinearity test shows that there is no strong relationship between the independent variables. The heteroscedasticity test shows that there is no particular pattern in the distribution of residuals. The autocorrelation test results also show the absence of autocorrelation symptoms in the model. However, the coefficient of determination test results show that IOS and PL only explain 8.6% of the variation in earnings quality. The F test shows that the regression model is not simultaneously significant, and the t test shows that neither IOS nor PL has a partially significant effect on Earnings Quality. Thus, it can be concluded that IOS and Earnings Growth do not have a significant influence on Earnings Quality in the companies studied. | en_US |
dc.language.iso | id | en_US |
dc.publisher | Universitas Medan Area | en_US |
dc.relation.ispartofseries | NPM;198320313 | - |
dc.subject | Investment Opportunity Set | en_US |
dc.subject | Pertumbuhan Laba | en_US |
dc.subject | Kualitas Laba | en_US |
dc.subject | Regresi Linier Berganda | en_US |
dc.subject | Asumsi Klasik | en_US |
dc.subject | Investment Opportunity Set | en_US |
dc.subject | Earnings Growth | en_US |
dc.subject | Earnings Quality | en_US |
dc.subject | Multiple Linear Regression | en_US |
dc.subject | Classical Assumptions | en_US |
dc.title | Pengaruh Investment Opportunity Set (IOS), dan pertumbuhan laba Terhadap Kualitas Laba Pada Perusahaan Real Estate dan Property yang terdapat di Bursa Efek Indonesia | en_US |
dc.type | Thesis | en_US |
Appears in Collections: | SP - Management |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
198320313 - Silvia Mileniati Barus - Fulltext.pdf | Fulltext | 1.09 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.