Please use this identifier to cite or link to this item:
https://repositori.uma.ac.id/handle/123456789/28454
Title: | The Use of Fuzzy C-Means Algorithm for Optimizing Weather Data Clustering in Rainfall Prediction in Indonesia |
Authors: | Hidayah, Safrina |
metadata.dc.contributor.advisor: | Muliono, Rizky |
Keywords: | Fuzzy;C-Means;Curah Hujan. |
Issue Date: | 24-Apr-2025 |
Publisher: | Universitas Medan Area |
Series/Report no.: | NPM;188160058 |
Abstract: | Penelitian ini mengembangkan sistem informasi untuk mengoptimalkan pengelompokan data curah hujan di Indonesia menggunakan metode Fuzzy C-Means. Pengelompokan curah hujan bertujuan memberikan informasi yang akurat mengenai kondisi iklim dengan mengkategorikan wilayah ke dalam tiga tingkat curah hujan: tinggi, sedang, dan rendah. Data yang digunakan berasal dari hasil pengamatan Badan Meteorologi, Klimatologi, dan Geofisika (BMKG) pada periode 2011–2015 di berbagai provinsi. Metode Fuzzy C-Means dipilih karena kemampuannya mengatasi ketidakpastian dengan memberikan derajat keanggotaan pada setiap cluster. Hasil pengelompokan ini diharapkan dapat membantu masyarakat dan sektor terkait seperti pertanian, perikanan, dan perencanaan wilayah dalam memprediksi curah hujan dan mengambil keputusan yang tepat. Sistem yang dikembangkan juga dapat diperluas untuk mengolah data cuaca lainnya seperti kualitas udara dan kecepatan angin. This study develops an information system to optimize rainfall data clustering in Indonesia using the Fuzzy C-Means method. Rainfall clustering aims to provide accurate information about climatic conditions by categorizing regions into three rainfall levels: high, medium, and low. The data used in this study were obtained from observations by the Meteorology, Climatology, and Geophysics Agency (BMKG) from 2011 to 2015 across various provinces. The Fuzzy C-Means method was selected due to its ability to handle uncertainty by assigning membership degrees to each cluster. The resulting clustering information is expected to assist the community and relevant sectors such as agriculture, fisheries, and regional planning in predicting rainfall and making informed decisions. The developed system can also be extended to process other weather data, including air quality and wind speed. |
Description: | 13 Halaman |
URI: | https://repositori.uma.ac.id/handle/123456789/28454 |
Appears in Collections: | SP - Informatic Engineering |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
188160058 - Safrina Hidayah - Fulltext.pdf | Fulltext | 680.55 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.