Please use this identifier to cite or link to this item:
https://repositori.uma.ac.id/handle/123456789/22726
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Lubis, Andre Hasudungan | - |
dc.contributor.author | Harefa, Desca Winta | - |
dc.date.accessioned | 2024-01-18T03:25:22Z | - |
dc.date.available | 2024-01-18T03:25:22Z | - |
dc.date.issued | 2023-09 | - |
dc.identifier.uri | https://repositori.uma.ac.id/handle/123456789/22726 | - |
dc.description | 44 Halaman | en_US |
dc.description.abstract | Pengetahuan tentang pola pembelian konsumen sangat penting untuk meningkatkan penjualan serta keuntungan untuk bisnis. Oleh karena itu, perlu menggunakan teknik tertentu seperti association rule mining untuk mendapatkan pola penjualan barang. Penelitian ini menggunakan algoritma Eclat untuk menentukan pola penjualan beserta penggunaan algoritma K-Means untuk mengelompokkan sejumlah besar data secara terpisah. Metode ini menggunakan dua tahap; tahap pertama adalah mempartisi data menjadi sembilan cluster dengan menggunakan K Means, dan tahap kedua adalah menemukan pola penjualan dengan menggunakan algoritma Eclat. Hasil penelitian menunjukkan bahwa rekomendasi pola yang dapat dibedakan pada 9 cluster dengan jumlah aturan tertinggi yaitu 203 dari antara cluster, menghasilkan 7 pola pada posisi support minimal 0,05. Knowledge of consumer buying patterns is crucial to increase sales as well as profits for bussiness. Hence, it is necessary to employs certain technique such as association rule mining to obtain patterns of goods sale. This study utilizes Eclat algorithm to determine sales pattern along with the use K-Means algorithms to grouping the large amount of data separately. The method used two stages; the firststage is to partitioning the data into nine clusters by using K-Means, and the second stage is to finding sales patterns by using the Eclat algorithm. The results show that the pattern recommendation that can be distinguished in 9 clusters with the highest number of 203 rules from among the clusters, resulting in 7 patterns at a minimum support position of 0.05. | en_US |
dc.language.iso | id | en_US |
dc.publisher | Universitas Medan Area | en_US |
dc.relation.ispartofseries | NPM;188160107 | - |
dc.subject | algoritma eclat | en_US |
dc.subject | algoritma K-Means | en_US |
dc.subject | penjualan | en_US |
dc.subject | association rules | en_US |
dc.subject | clustering | en_US |
dc.subject | aclat algorithm | en_US |
dc.subject | K-Means algorithm | en_US |
dc.subject | sales | en_US |
dc.title | Analisis Algoritma Eclat dan Algoritma K-Means pada Data Transaksi Penjualan | en_US |
dc.title.alternative | Analysis of the Eclat Algorithm and K-Means Algorithm on Sales Transaction Data | en_US |
dc.type | Thesis | en_US |
Appears in Collections: | SP - Informatic Engineering |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
188160107 - Desca Winta Harefa Fulltext.pdf | Cover, Abstract, Chapter I, II, III, V, Bibliography | 1.4 MB | Adobe PDF | View/Open |
188160107 - Desca Winta Harefa Chapter IV.pdf Restricted Access | Chapter IV | 306.13 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.