Please use this identifier to cite or link to this item:
https://repositori.uma.ac.id/handle/123456789/24756
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Muliono, Rizki | - |
dc.contributor.advisor | Noviandri, Dian | - |
dc.contributor.author | Iswanda, Arbi | - |
dc.date.accessioned | 2024-07-23T07:45:52Z | - |
dc.date.available | 2024-07-23T07:45:52Z | - |
dc.date.issued | 2023-11-25 | - |
dc.identifier.uri | https://repositori.uma.ac.id/handle/123456789/24756 | - |
dc.description | 70 Halaman | en_US |
dc.description.abstract | Data mining adalah suatu proses untuk menganalisis kumpulan-kumpulan data. Yang dimana pada proses data mining memiliki aturan asosiasi atau association rules yaitu teknik yang bertujuan untuk menggali sekumpulan item yang muncul secara bersamaan. Pada aturan asosiasi juga terdapat frequent itemset yang dimana pada itemset ini digunakan pada algoritma frequent pattern growth (fp-growth). Di dalam algoritma frequent pattern growth (fp-growth) akan menentukan himpunan data yang paling sering muncul secara bersamaan (frequent itemset). Dalam proses algoritma frequent pattern growth (fp-growth) ini akan menghasilkan suatu cara untuk pengambilan suatu keputusan. Pada penelitian ini memiliki tujuan untuk mengetahui pola pembelian obat pada Apotek Kharisma yang nantinya akan digunakan sebagai pengetahuan yang baru. Data yang digunakan didalam penelitian ini menggunakan data obat sebanyak 1500 data. Data mining is a process for analyzing data sets. Which in the data mining process has association rules or association rules, which are techniques that aim to explore a set of items that appear simultaneously. In the association rules there is also a frequent itemset which is used in the frequent pattern growth (fp-growth) algorithm. In the frequent pattern growth (fp-growth) algorithm, it will determine the data set that appears most often simultaneously (frequent itemset). In the process of the frequent pattern growth (fp-growth) algorithm, it will produce a way to make a decision. This study aims to determine the pattern of purchasing drugs at the Apotek Kharisma which will later be used as new knowledge. The data used in this study used 1500 drug data. | en_US |
dc.language.iso | id | en_US |
dc.publisher | Universitas Medan Area | en_US |
dc.relation.ispartofseries | NPM;188160023 | - |
dc.subject | data mining | en_US |
dc.subject | frequent itemset | en_US |
dc.subject | apotek | en_US |
dc.subject | fp growth | en_US |
dc.title | Penerapan Data Mining dalam Menentukan Pola Pembelian Obat Menggunakan Metode Frequent Pattern Growth (Fp- Growth) (Studi Kasus: Apotek Kharisma) | en_US |
dc.title.alternative | Application of Data Mining in Determining Drug Purchasing Patterns Using the Frequent Pattern Growth (FP-Growth) Method (Case Study: Kharisma Pharmacy) | en_US |
dc.type | Skripsi Sarjana | en_US |
Appears in Collections: | SP - Informatic Engineering |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
188160023 - Arbi Iswanda - Fulltext.pdf | Cover, Abstract, Chapter I, II, III, V, Bibliography | 2.67 MB | Adobe PDF | View/Open |
188160023 - Arbi Iswanda - Chapter IV.pdf Restricted Access | Chapter IV | 746.4 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.