Please use this identifier to cite or link to this item: https://repositori.uma.ac.id/handle/123456789/29226
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHartono-
dc.contributor.authorRiyadi, Muhammad Adilisyah-
dc.date.accessioned2026-01-19T04:38:30Z-
dc.date.available2026-01-19T04:38:30Z-
dc.date.issued2025-09-
dc.identifier.urihttps://repositori.uma.ac.id/handle/123456789/29226-
dc.description60 Halamanen_US
dc.description.abstractPenyakit Jantung Koroner(PJK) adalah salah satu penyebab kematian paling umum di dunia, dan deteksi dini sangat penting untuk mengurangi efek fatalnya. Dalam penelitian ini, dua algoritma Machine Learning, Decision Tree dan Naïve Bayes, dievaluasi untuk mengklasifikasikan penyakit jantung menggunakan dataset Kaggle. Algoritma ini dievaluasi berdasarkan akurasi, presisi, recall, fi-score nya melalui tiga proporsi data latih dan uji (85:15, 75:25, dan 60:40). Hasil penelitian menunjukkan bahwa Decision Tree secara konsisten memiliki kinerja yang lebih baik daripada Naïve Bayes. Keunggulan Decision Tree juga ditunjuk oleh metrik seperti presisi dan recall. Keunggulan utama Decision Tree Adalah kemampuannya untuk menangani data numerik dan kategorikal dan membuat hasil klasifikasi lebih mudah dipahami.Sebaliknya, Naïve Bayes menunjukkan keterbatasan dalam mengidentifikasi pola kompleks dalam data medis. Meskipun dia berhasil. Hasil evaluasi menunjukkan bahwa algoritma Decision Tree lebih baik untuk klasifikasi penyakit jantung karena lebih stabil dan akurat. Penelitian ini memberikan wawasan untuk pengembang sistem deteksi dini penyakit jantung yang lebih efisien yang menggunakan Machine Learning. Corony Heart Diease (CHD) is one of the most common causes of death worldwide, and early detection is crucial to reduce its fatal effects, In this study, two Machine Learning algorithms, Decision Tree and Naïve Bayes, were evaluated to classify heart disease using the Kaggle dataset. These algorithms were evaluated based on their accuracy, precision, recall, and fi-score across three training and testing data proportions (85:15, 75:25, and 60:40). The result showed that Decision Tree consistenly outperformed Naïve Bayes. The superiority of Decision Tree was also demonstrated by metrics such as precision dan recall. The main advantage of Decision Tree is its ability to handle both numerical and categorical data and make classification results easier to understand. In contracts, Naïve Bayes showed limitations in indentifying complex patterns in medical data. Despite its success, the evaluation results showed that the Decision Tree algorithm is better for heart disease classification because it is more stable and accurate. This study provides insights for developers of more efficient early detection systems for heart disease using Machine Learning.en_US
dc.language.isoiden_US
dc.publisherUniversitas Medan Areaen_US
dc.relation.ispartofseriesNPM;218160043-
dc.subjectDecision Treeen_US
dc.subjectNaïve Bayesen_US
dc.subjectClassificationen_US
dc.subjectHeart Diseaseen_US
dc.subjectMachine Learningen_US
dc.subjectModel Evaluationen_US
dc.subjectEvaluasi Modelen_US
dc.subjectKlasifikasien_US
dc.subjectPenyakit Jantungen_US
dc.titlePerbandingan Algoritma Decision Tree dan Naive Bayes dalam mengklasifikasikan Penyakit Jantungen_US
dc.title.alternativeComparison of Decision Tree and Naive Bayes Algorithms in Classifying Heart Diseaseen_US
dc.typeThesisen_US
Appears in Collections:SP - Informatic Engineering

Files in This Item:
File Description SizeFormat 
218160043 - Muhammad Adilisyah Riyadi - Chapter IV.pdf
  Restricted Access
Chapter IV2.2 MBAdobe PDFView/Open Request a copy
218160043 - Muhammad Adilisyah Riyadi - Fulltext.pdfCover, Abstract, Chapter I, II, III, V, Bibliography887.74 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.