Please use this identifier to cite or link to this item:
https://repositori.uma.ac.id/handle/123456789/29226| Title: | Perbandingan Algoritma Decision Tree dan Naive Bayes dalam mengklasifikasikan Penyakit Jantung |
| Other Titles: | Comparison of Decision Tree and Naive Bayes Algorithms in Classifying Heart Disease |
| Authors: | Riyadi, Muhammad Adilisyah |
| metadata.dc.contributor.advisor: | Hartono |
| Keywords: | Decision Tree;Naïve Bayes;Classification;Heart Disease;Machine Learning;Model Evaluation;Evaluasi Model;Klasifikasi;Penyakit Jantung |
| Issue Date: | Sep-2025 |
| Publisher: | Universitas Medan Area |
| Series/Report no.: | NPM;218160043 |
| Abstract: | Penyakit Jantung Koroner(PJK) adalah salah satu penyebab kematian paling umum di dunia, dan deteksi dini sangat penting untuk mengurangi efek fatalnya. Dalam penelitian ini, dua algoritma Machine Learning, Decision Tree dan Naïve Bayes, dievaluasi untuk mengklasifikasikan penyakit jantung menggunakan dataset Kaggle. Algoritma ini dievaluasi berdasarkan akurasi, presisi, recall, fi-score nya melalui tiga proporsi data latih dan uji (85:15, 75:25, dan 60:40). Hasil penelitian menunjukkan bahwa Decision Tree secara konsisten memiliki kinerja yang lebih baik daripada Naïve Bayes. Keunggulan Decision Tree juga ditunjuk oleh metrik seperti presisi dan recall. Keunggulan utama Decision Tree Adalah kemampuannya untuk menangani data numerik dan kategorikal dan membuat hasil klasifikasi lebih mudah dipahami.Sebaliknya, Naïve Bayes menunjukkan keterbatasan dalam mengidentifikasi pola kompleks dalam data medis. Meskipun dia berhasil. Hasil evaluasi menunjukkan bahwa algoritma Decision Tree lebih baik untuk klasifikasi penyakit jantung karena lebih stabil dan akurat. Penelitian ini memberikan wawasan untuk pengembang sistem deteksi dini penyakit jantung yang lebih efisien yang menggunakan Machine Learning. Corony Heart Diease (CHD) is one of the most common causes of death worldwide, and early detection is crucial to reduce its fatal effects, In this study, two Machine Learning algorithms, Decision Tree and Naïve Bayes, were evaluated to classify heart disease using the Kaggle dataset. These algorithms were evaluated based on their accuracy, precision, recall, and fi-score across three training and testing data proportions (85:15, 75:25, and 60:40). The result showed that Decision Tree consistenly outperformed Naïve Bayes. The superiority of Decision Tree was also demonstrated by metrics such as precision dan recall. The main advantage of Decision Tree is its ability to handle both numerical and categorical data and make classification results easier to understand. In contracts, Naïve Bayes showed limitations in indentifying complex patterns in medical data. Despite its success, the evaluation results showed that the Decision Tree algorithm is better for heart disease classification because it is more stable and accurate. This study provides insights for developers of more efficient early detection systems for heart disease using Machine Learning. |
| Description: | 60 Halaman |
| URI: | https://repositori.uma.ac.id/handle/123456789/29226 |
| Appears in Collections: | SP - Informatic Engineering |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 218160043 - Muhammad Adilisyah Riyadi - Chapter IV.pdf Restricted Access | Chapter IV | 2.2 MB | Adobe PDF | View/Open Request a copy |
| 218160043 - Muhammad Adilisyah Riyadi - Fulltext.pdf | Cover, Abstract, Chapter I, II, III, V, Bibliography | 887.74 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.