Please use this identifier to cite or link to this item: https://repositori.uma.ac.id/handle/123456789/25351
Title: Penerapan Data Mining Menggunakan Algoritma K-Medoids dalam Pengelompokan Nasabah Penerima Reward pada PT. Dotri Gadai Jaya
Other Titles: Application of Data Mining Using the K-Medoids Algorithm in Grouping Reward Recipient Customers at PT. Dotri Gadai Jaya
Authors: Zebua, Meniati
metadata.dc.contributor.advisor: Muliono, Rizki
Keywords: data mining;clustering;k-medoids;nasabah;reward;customers
Issue Date: 28-Jun-2024
Publisher: UNIVERSITAS MEDAN AREA
Series/Report no.: NPM;208160007
Abstract: Pertumbuhan pesat industri keuangan menjadikan perusahaan-perusahaan mengalami persaingan yang ketat. PT Dotri Gadai Jaya (PT DGJ) adalah sebuah perusahaan pergadaian swasta yang juga merasakan dampaknya dan berupaya dalam mempertahankan dan meningkatkan loyalitas nasabah di tengah persaingan tersebut, salah satu strategi yang terapkan oleh PT DGJ adalah memberikan reward kepada nasabah berdasarkan jumlah transaksi pinjaman gadai. Namun, dalam pelaksanaannya, perusahaan menghadapi kesulitan dalam pengelompokan nasabah yang pantas menerima reward secara efisien dan akurat, selama ini pengelompokan nasabah penerima reward dilakukan secara manual yang dapat memakan waktu yang cukup lama, adanya potensi kesalahan dan kurangnya transparan. Penelitian ini bertujuan untuk menerapkan data mining menggunakan algoritma K-Medoids dalam pengelompokan nasabah penerima reward di PT DGJ, mengetahui hasil pengelompokan untuk membantu PT DGJ dalam menentukan nasabah penerima reward, dan mengevaluasi hasilnya menggunakan Davies Bouldin Index (DBI). Untuk mengatasi masalah dan mencapai tujuan tersebut, maka diperlukannya penerapan data mining menggunakan algoritma K-Medoids. Hasil pengelompokan dari 1.085 nasabah menunjukan bahwa jumlah nasabah yang mendapatkan reward sebesar 30% sebanyak 314 nasabah, 20% sebanyak 540 nasabah dan 10% sebanyak 231 nasabah. Evaluasi kualitas cluster menggunakan DBI menghasilkan nilai sebesar 0.368812, hal ini membuktikan bahwa nilai tersebut mendekati angka 0 atau terhitung cukup kecil. Sehingga dapat dikatakan bahwa cluster yang dihasilkan cukup baik. Penelitian ini memberikan kontribusi penting bagi PT DGJ dalam mengoptimalkan strategi pemberian reward kepada nasabah guna meningkatkan efesiensi dan keakuratan dalam pengelompokan nasabah. The rapid growth of the financial industry makes companies experience intense competition. PT Dotri Gadai Jaya (PT DGJ) is a private pawnshop company that is also feeling the impact and is working to maintain and increase customer loyalty amidst this competition. One of the strategies implemented by PT DGJ is to provide rewards to customers based on the number of pawn loan transactions. However, in its implementation, companies face difficulties in grouping customers who deserve to receive rewards efficiently and accurately. So far, grouping customers who receive rewards is done manually, which can take quite a long time, there is the potential for errors and a lack of transparency. This research aims to apply data mining using the K-Medoids algorithm in grouping reward recipient customers at PT DGJ, knowing the grouping results to help PT DGJ in determining reward recipient customers, and evaluating the results using the Davies Bouldin Index (DBI). To overcome the problem and achieve these goals, it is necessary to apply data mining using the K-Medoids algorithm. The grouping results of 1,085 customers show that the number of customers who received a reward of 30% was 314 customers, 20% was 540 customers and 10% was 231 customers. Evaluation of cluster quality using DBI produces a value of 0.368812, this proves that the value is close to 0 or is quite small. So it can be said that the resulting cluster is quite good. This research provides an important contribution to PT DGJ in optimizing the strategy of giving rewards to customers in order to increase efficiency and accuracy in customer grouping.
Description: 57 Halaman
URI: https://repositori.uma.ac.id/handle/123456789/25351
Appears in Collections:SP - Informatic Engineering

Files in This Item:
File Description SizeFormat 
208160007 - Meniati Zebua - Fulltext.pdfCover, Abstract, Chapter I, II, III, V, Bibliography3.24 MBAdobe PDFView/Open
208160007 - Meniati Zebua - Chapter IV.pdf
  Restricted Access
Chapter IV645.67 kBAdobe PDFView/Open Request a copy


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.