Please use this identifier to cite or link to this item:
https://repositori.uma.ac.id/handle/123456789/26291
Title: | Klasifikasi Sentimen Tokoh Pilpres 2024 pada Twitter Menggunakan Metode Support Vector Machine |
Other Titles: | Classification of Sentiments of 2024 Presidential Election Figures on Twitter Using the Support Vector Machine Method |
Authors: | Nasution, Nazli Buyung |
metadata.dc.contributor.advisor: | - |
Keywords: | sentiment classification;general election;2024 presidential election;twitter;support vector machine (SVM);klasifikasi sentimen;pemilihan umum;pilpres 2024;twitter |
Issue Date: | 2-Jan-2021 |
Publisher: | UNIVERSITAS MEDAN AREA |
Series/Report no.: | NPM;- |
Abstract: | Indonesia sebagai negara hukum yang demokratis menekankan kedaulatan rakyat yang dijalankan berdasarkan UUD 1945. Pemilihan Umum (Pemilu) adalah salah satu bentuk kedaulatan rakyat untuk memilih pemimpin yang dipercayai, seperti tertuang dalam UU No. 7 Tahun 2017 tentang Pemilihan Umum. Dalam konteks Pilpres 2024, tantangan terbesar adalah penyebaran berita hoax di media sosial, terutama Twitter, yang dapat mempengaruhi sentimen publik terhadap kandidat yang mengikuti kontestasi pilpres pada 2024. Proses penelitian mencakup pengambilan data tweet, preprocessing text, klasifikasi dan evaluasi menggunakan confusion matrix. Penelitian ini bertujuan untuk mengklasifikasikan sentimen terhadap tokoh Pilpres 2024 di Twitter menggunakan metode Support Vector Machine (SVM). SVM dipilih karena keunggulannya dalam mengelompokkan data dengan tingkat eror generalisasi yang lebih rendah dibandingkan metode lainnya seperti Neural Network. Hasil penelitian menunjukkan bahwa SVM efektif dalam mengklasifikasikan sentimen tweet, sehingga dapat membantu dalam mengidentifikasi berita hoax dan kebenaran yang ada di media sosial. Indonesia as a democratic rule of law emphasizes people's sovereignty which is carried out based ont he 1945 Constitution. General Elections (Pemilu) are a form of people's sovereignty to electleaders they trust, as stated in Law no. 7 of 2017 concerning General Elections. In the context of the 2024 Presidential Election, the biggest challenge is the spread of hoax news on social media, especially Twitter, which can influence public sentiment towards candidates participating in the 2024 presidential election. The research process include scollecting tweet data, preprocessing text, classification and evaluating using a confusion matrix. The reseachs aims to classify sentiment towards figures in the 2024 presidential election on Twitter using Support Vector Machine was chosen because of issu periority in grouping data with a lower generalization errorrate compared too thermethods such as Neural Network. The research results show that SVM is effective in classifying tweet sentiment, so it can help in identifying hoax and truth news on social media. |
Description: | 6 Halaman |
URI: | https://repositori.uma.ac.id/handle/123456789/26291 |
Appears in Collections: | SP - Informatic Engineering |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Nazli Buyung Nasution.pdf | Fulltext | 1.2 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.